
4

Chapter 2

Usability Evaluation of User

Interfaces

2.1 Introduction

Usability is the extent to which users can use a computer system to achieve speci�ed
goals e�ectively and eÆciently while promoting feelings of satisfaction in a given context of use.1

Usability evaluation (UE) consists of methodologies for measuring the usability aspects of a system's
user interface (UI) and identifying speci�c problems [Dix et al. 1998; Nielsen 1993]. Usability
evaluation is an important part of the overall user interface design process, which ideally consists of
iterative cycles of designing, prototyping, and evaluating [Dix et al. 1998; Nielsen 1993]. Usability
evaluation is itself a process that entails many activities depending on the method employed.
Common activities include:

� Capture - collecting usability data, such as task completion time, errors, guideline violations,
and subjective ratings;

� Analysis - interpreting usability data to identify problems in the interface; and

� Critique - suggesting solutions or improvements to mitigate problems.

A wide range of usability evaluation techniques have been proposed, and a subset of these
are currently in common use. Some evaluation techniques, such as formal usability testing, can only
be applied after the interface design or prototype has been implemented. Others, such as heuristic
evaluation, can be applied in the early stages of design. Each technique has its own requirements,
and generally di�erent techniques uncover di�erent usability problems.

Usability �ndings can vary widely when di�erent evaluators study the same user interface,
even if they use the same evaluation technique [Bailey et al. 1992; Desurvire 1994; Je�ries et al. 1991;
Molich et al. 1998; Molich et al. 1999; Nielsen 1993]. As an example, two comparative usability
testing studies (CUE-1 [Molich et al. 1998] and CUE-2 [Molich et al. 1999]) demonstrated less than
a 1% overlap in �ndings among four and nine independent usability testing teams for evaluations
of two user interfaces2. This result implies a lack of systematicity or predictability in the �ndings

1Adapted from ISO9241 (Ergonomic requirements for oÆce work with visual display terminals [International Stan-
dards Organization 1999]).

2The �rst study involved four professional teams, while the second study involved seven professional teams and
two student teams. Details were not provided about study participants.



5

of usability evaluations. Furthermore, usability evaluation typically only covers a subset of the
possible actions users might take. For these reasons, usability experts often recommend using
several di�erent evaluation techniques [Dix et al. 1998; Nielsen 1993].

How can systematicity of results and fuller coverage in usability assessment be achieved?
One solution is to increase the number of usability teams evaluating the system, and to increase the
number of study participants. An alternative is to automate some aspects of usability evaluation,
such as the capture, analysis, or critique activities.

Automating some aspects of usability evaluation has several potential advantages over
non-automated evaluation, such as:

� Increasing consistency of the errors uncovered. In some cases it is possible to develop models
of task completion within an interface, and software tools can consistently detect deviations
from these models. It is also possible to detect usage patterns that suggest possible errors,
such as immediate task cancellation.

� Increasing the coverage of evaluated features. Due to time, cost, and resource constraints,
it is not always possible to assess every single aspect of an interface. Software tools that
generate plausible usage traces make it possible to evaluate aspects of interfaces that may
not otherwise be assessed.

� Enabling comparisons between alternative designs. Because of time, cost, and resource con-
straints, usability evaluations typically assess only one design or a small subset of features
from multiple designs. Some automated analysis approaches, such as analytical modeling and
simulation, enable designers to compare predicted performance for alternative designs.

� Predicting time and error costs across an entire design. As previously discussed, it is not
always possible to assess every single aspect of an interface using non-automated evaluation.
Software tools, such as analytical models, make it possible to widen the coverage of evaluated
features.

� Reducing the need for evaluation expertise among individual evaluators. Automating some
aspects of evaluation, such as the analysis or critique activities, could aid designers who do
not have expertise in those aspects of evaluation.

� Reducing the cost of usability evaluation. Methods that automate capture, analysis, or cri-
tique activities can decrease the time spent on usability evaluation and consequently the cost.
For example, software tools that automatically log events during usability testing eliminate
the need for manual logging, which can typically take up a substantial portion of evaluation
time.

� Incorporating evaluation within the design phase of UI development, as opposed to being
applied after implementation. This is important because evaluation with most non-automated
methods can typically be done only after the interface or prototype has been built and changes
are more costly [Nielsen 1993]. Modeling and simulation tools make it possible to explore UI
designs earlier.

It is important to note that automation is considered to be a useful complement and
addition to standard evaluation techniques such as heuristic evaluation and usability testing { not
a substitute. Di�erent techniques uncover di�erent kinds of problems, and subjective measures
such as user satisfaction are unlikely to be predictable by automated methods.



6

1. Specify usability evaluation goals.

2. Determine UI aspects to evaluate.

3. Identify target users.

4. Select usability metrics.

5. Select evaluation method(s).

6. Select tasks.

7. Design experiments.

8. Capture usability data.

9. Analyze and interpret usability data.

10. Critique UI to suggest improvements.

11. Iterate the process if necessary.

12. Present results.

Figure 2.1: Activities that may occur during the usability evaluation process.

Despite the potential advantages, the space of usability evaluation automation is quite
underexplored. This chapter presents a detailed survey of UE methods, with an emphasis on
automation; a shorter version of this survey is scheduled for publication [Ivory and Hearst 2001].
The chapter begins with a brief overview of the usability evaluation process. It introduces a
taxonomy for classifying UE automation and summarizes the application of this taxonomy to 133
usability evaluation methods. Several sections describe these methods in more detail, including
summative assessments of automation techniques. The results of this survey suggest promising
ways to expand existing approaches to better support usability evaluation; these approaches are
also discussed.

2.2 The Usability Evaluation Process

Usability evaluation is a process that entails some of the activities depicted in Figure 2.1,
depending on the method used. This section discusses each of these activities. Several literature
sources informed this discussion, including [Dix et al. 1998; Nielsen 1993; Shneiderman 1998].

2.2.1 Specify Usability Evaluation Goals

Usability evaluation is applicable at all stages of a UI life cycle (e.g., design, implemen-
tation, and re-design). At these various stages, di�erent UE goals are relevant. Below is a list of
typical UE goals.

� Specify UI requirements

� Evaluate design alternatives

� Identify speci�c usability problems



7

� Improve UI performance

The evaluator must clearly specify the goals of the usability evaluation at the outset of
the study. These goals inuence other aspects of UI assessment, such as the UI components to
evaluate and appropriate evaluation methods.

2.2.2 Determine UI Aspects to Evaluate

Some UIs can be extremely large and complex, and an evaluation of all aspects may not be
economically feasible. Hence, the evaluator must determine speci�c UI aspects to evaluate. These
aspects must be consistent with the goals of the usability evaluation.

2.2.3 Identify Target Users

An interface may be intended for a large user community, but it is important to determine
user characteristics most relevant for the study and for the UI aspects in particular. If users are
employed during the study, they need to be as representative of the larger user community as
possible.

2.2.4 Select Usability Metrics

Usability metrics are a crucial component of the usability evaluation. The goal in selecting
these metrics is to choose a minimal number of metrics that reveal the maximum amount of usability
detail for the UI under study. ISO Standard 9241 [International Standards Organization 1999]
recommends using e�ectiveness, eÆciency, and satisfaction measures as described below.

� E�ectiveness is the accuracy and completeness with which users achieve speci�ed goals. Ex-
ample metrics include: percentage of goals achieved, functions learned, and errors corrected
successfully.

� EÆciency assesses the resources expended in relation to the accuracy and completeness with
which users achieve goals. Example metrics include: the time to complete a task, learning
time, and time spent correcting errors.

� Satisfaction reects users' freedom from discomfort and positive attitudes about use of an
interface. Example metrics include: ratings for satisfaction, ease of learning, and error han-
dling.

Metrics discussed above are quantitative in nature. Non-quantitative metrics could in-
clude, for example, speci�c heuristic violations identi�ed during a usability inspection.

2.2.5 Select Evaluation Method(s)

Choosing one or more usability evaluation methods is an important step of the UE process.
There are �ve classes of UE methods: usability testing, inspection, inquiry, analytical modeling, and
simulation. An inspection entails an evaluator using a set of criteria to identify potential usability
problems in an interface, while testing involves an evaluator observing3 participants interacting with

3During some usability testing, such as remote testing, the evaluator may not actually observe a participant
interacting with an interface. Other techniques, such as logging (discussed in Section 2.5.2), may be employed to
record the interaction for subsequent analysis.



8

an interface (i.e., completing tasks) to determine usability problems. Similar to usability testing,
inquiry methods entail gathering subjective input (e.g., preferences) from participants, typically
through interviews, surveys, questionnaires, or focus groups. Analytical modeling and simulation
are engineering approaches to UE that enable evaluators to predict usability with user and interface
models. Sections 2.5 { 2.9 discuss the �ve method classes as well as methods within each of the
classes in more detail.

UE methods di�er along many dimensions, such as resource requirements, costs, results,
and applicability (i.e., at what stages of the interface development process). There is a wide range
of methods that one could employ at all stages of system development, which actually complicates
choosing an appropriate method. Human Factors Engineering, a company specializing in usability
evaluation, has an online resource, Ask Usability Advisor [Human Factors Engineering 1999a], that
recommends UE methods based on the following usability requirements: software development
stage (requirement, design, code, test, and deployment), personnel availability (usability experts,
participants, and software developers), usability dimensions to be measured (e�ectiveness, eÆciency,
and satisfaction), the need to obtain quantitative measures, and the need to do remote evaluation.
There are also two comprehensive archives of UE methods online - Usability Evaluation Methods
[Human Factors Engineering 1999b] and the Usability Methods Toolbox [Hom 1998].

UE methods uncover di�erent types of usability problems; therefore, it is often recom-
mended for evaluators to use multiple assessment methods [Je�ries et al. 1991; Molich et al. 1998;
Molich et al. 1999; Nielsen 1993]. For example, during a usability test, participants may also com-
plete questionnaires to provide subjective input; thus, enabling evaluators to gather quantitative
and qualitative data.

2.2.6 Select Tasks

Tasks are the most crucial part of the usability evaluation [Dix et al. 1998; Nielsen 1993;
Shneiderman 1998]. They must be appropriate for the UI aspects under study, the target users,
and the evaluation method. Other constraints may a�ect the selection of tasks, such as cost and
time limits during usability testing sessions, for instance.

2.2.7 Design Experiments

After completing the previously discussed activities, the evaluator may need to design
experiments for collecting usability data. In particular, the evaluator needs to decide on the number
of participants (evaluators and users), the evaluation procedure (this is largely dictated by the UE
method) as well as on the environment and system setup. The nature of experiments depends on the
evaluation method. Experiments may entail: completing tasks in a controlled manner (usability
testing); responding to speci�c questions (inquiry); or comparing alternative designs (analytical
modeling and simulation). It is also recommended that the evaluator conduct pilot runs during
this phase [Nielsen 1993], especially if user involvement is required.

2.2.8 Capture Usability Data

During this phase, the evaluator employs the UE method to record previously speci�ed
usability metrics. For some methods, such as usability testing and inspection, the evaluator may
also record speci�c usability problems encountered during evaluation.



9

2.2.9 Analyze and Interpret Data

The primary goal of usability data analysis is to summarize the results in a manner that
informs interpretation. This summarization may entail statistical techniques based on the goals
of the UE. It may also entail creating a list of speci�c usability problems found along with their
severity.

Actually interpreting the results of the study is a key part of the evaluation. It entails
using the analysis of usability data to draw conclusions as dictated by the evaluation goals. For
example, it may mean concluding that one design is better than another or whether usability
requirements have been met.

2.2.10 Critique UI to Suggest Improvements

Ideally, analysis and interpretation of usability data illustrate aws in the UI design as
well as ways to possibly improve the design. Subsequent analysis may be required to verify that
suggested improvements actually improve interface usability.

2.2.11 Iterate Process

Analysis and interpretation of usability data may illustrate the need to repeat the UE
process. This iteration may be warranted due to the identi�cation of other UI aspects that need
evaluation or changes to the UI. Hence, UE may consist of several cycles through this process. This
is as expected when an evaluator follows usability engineering or iterative design processes [Dix
et al. 1998; Nielsen 1993].

2.2.12 Present Results

The �nal step of the usability evaluation process is to communicate the results and inter-
pretation of these results to the stakeholders. Ideally, the evaluator presents the results such that
they can be easily understood (e.g., using graphs and providing severity ratings) and acted upon.

2.3 Taxonomy of Usability Evaluation Automation

In this discussion, a distinction is made between WIMP (Windows, Icons, Pointer, and
Mouse) interfaces and Web interfaces, in part because the nature of these interfaces di�er and in
part because the usability evaluation methods discussed have often only been applied to one type
or the other in the literature. WIMP interfaces tend to be more functionally-oriented than Web
interfaces. In WIMP interfaces, users complete tasks, such as opening or saving a �le, by following
speci�c sequences of operations. Although there are some functional Web applications, most Web
interfaces o�er limited functionality (i.e., selecting links or completing forms), but the primary role
of many Web sites is to provide information. Of course, the two types of interfaces share many
characteristics; their di�erences are highlighted when relevant to usability evaluation.

Several surveys of UE methods for WIMP interfaces exist; Hom [1998] and Human Factors
Engineering [1999b] provide a detailed discussion of inspection, inquiry, and testing methods (these
terms are de�ned below). Several taxonomies of UE methods have also been proposed. The most
commonly used taxonomy is one that distinguishes between predictive (e.g., GOMS analysis and
cognitive walkthrough, also de�ned below) and experimental (e.g., usability testing) techniques
[Coutaz 1995]. White�eld et al. [1991] present another classi�cation scheme based on the presence



10

or absence of a user and a computer. Neither of these taxonomies reect the automated aspects of
UE methods.

The sole existing survey of usability evaluation automation, by Balbo [1995], uses a tax-
onomy which distinguishes among four approaches to automation:

� Non Automatic: methods \performed by human factors specialists."

� Automatic Capture: methods that \rely on software facilities to record relevant informa-
tion about the user and the system, such as visual data, speech acts, and keyboard and mouse
actions."

� Automatic Analysis: methods that are \able to identify usability problems automatically."

� Automatic Critic: methods which \not only point out diÆculties but propose improve-
ments."

Balbo uses these categories to classify thirteen common and uncommon UE methods.
However, most of the methods surveyed require extensive human e�ort, because they rely on
formal usability testing and/or require extensive evaluator interaction. For example, Balbo classi�es
several techniques for processing log �les as automatic analysis methods despite the fact that these
approaches require formal testing or informal use to generate those log �les. What Balbo calls an
automatic critic method may require the evaluator to create a complex UI model as input. Thus,
this classi�cation scheme is somewhat misleading since it ignores the non-automated requirements
of the UE methods.

2.3.1 Proposed Taxonomy

To facilitate discussion of usability evaluation methods, UE methods are grouped along
the following four dimensions:

� Method Class: describes the type of evaluation conducted at a high level (e.g., usability
testing or simulation);

� Method Type: describes how the evaluation is conducted within a method class, such as
thinking-aloud protocol (usability testing class) or information processor modeling (simulation
class);

� Automation Type: describes the evaluation aspect that is automated (e.g., capture, anal-
ysis, or critique); and

� E�ort Level: describes the type of e�ort required to execute the method (e.g., model devel-
opment or interface usage).

Method Class

UE methods are classi�ed into �ve method classes: testing, inspection, inquiry, analytical
modeling, and simulation.

� Testing: an evaluator observes participants interacting with an interface (i.e., completing
tasks) to determine usability problems.



11

� Inspection: an evaluator uses a set of criteria or heuristics to identify potential usability
problems in an interface.

� Inquiry: participants provide feedback on an interface via interviews, surveys, etc.

� Analytical Modeling: an evaluator employs user and interface models to generate usability
predictions.

� Simulation: an evaluator employs user and interface models to mimic a user interacting
with an interface and report the results of this interaction (e.g., simulated activities, errors,
and other quantitative measures).

UE methods in the testing, inspection, and inquiry classes are appropriate for formative
(i.e., identifying speci�c usability problems) and summative (i.e., obtaining general assessments of
usability) purposes. Analytical modeling and simulation are engineering approaches to UE that
enable evaluators to predict usability with user and interface models. Software engineering practices
have had a major inuence on the �rst three classes, while the latter two, analytical modeling and
simulation, are quite similar to performance evaluation techniques used to analyze the performance
of computer systems [Jain 1991]. Chapter 3 discusses performance evaluation techniques in detail.

Method Type

There are a wide range of evaluation methods within the testing, inspection, inquiry,
analytical modeling, and simulation classes. Rather than discuss each method individually, one
or more related methods are grouped into method types; this type typically describes how an
evaluation is performed. Sections 2.5 { 2.9 present method types.

Automation Type

Balbo's automation taxonomy (described above) was adapted to specify which aspect of
a usability evaluation method is automated: none, capture, analysis or critique.

� None: no level of automation supported (i.e., evaluator performs all aspects of the evaluation
method).

� Capture: software automatically records usability data (e.g., logging interface usage).

� Analysis: software automatically identi�es potential usability problems.

� Critique: software automates analysis and suggests improvements.

E�ort Level

Balbo's automation taxonomy is also expanded to include consideration of a
method's non-automated requirements. Each UE method is augmented with an attribute called
e�ort level; this indicates the human e�ort required for method execution:

� Minimal E�ort: does not require interface usage or modeling.

� Model Development: requires the evaluator to develop a UI model and/or a user model
to employ the method.



12

Evaluation
Method

− Testing
− Inspection
− Inquiry
− Analytical Modeling
− Simulation

Method Class

Automation Type
− None
− Capture
− Analysis
− Critique

Automation Type
− Analysis

Method Type
− Log File Analysis

Automation Type

Method Class
− Testing

Usability − Formal Use

Method Type
− Log File Analysis
− Guideline Review
− Surveys
− GOMS Analysis
− Genetic Algorithms ...

Method Type
− Guideline Review

− Critique

Effort Level
− Minimal Effort

Bobby

MRP

− Inspection
Method Class

Effort Level
− Minimal Effort
− Model Development
− Informal Use
− Formal Use

Effort Level
− Informal Use

Figure 2.2: Summary of the proposed taxonomy for classifying usability evaluation methods. The right
side of the �gure demonstrates the taxonomy with two evaluation methods that will be discussed in later
sections.

� Informal Use: requires completion of freely chosen tasks (i.e., unconstrained use by a user
or evaluator).

� Formal Use: requires completion of specially selected tasks (i.e., constrained use by a user
or evaluator).

These levels are not necessarily ordered by the amount of e�ort required, since this depends
on the method used.

Summary

Figure 2.2 provides a synopsis of the proposed taxonomy and demonstrates it with two
evaluation methods. The taxonomy consists of: a method class (testing, inspection, inquiry, analyt-
ical modeling, and simulation); a method type (e.g., log �le analysis, guideline review, surveys, etc.);
an automation type (none, capture, analysis, and critique); and an e�ort level (minimal, model,
informal, and formal). This taxonomy is used to analyze evaluation methods in the remainder of
this chapter.

2.4 Overview of Usability Evaluation Methods

Seventy-�ve UE methods applied to WIMP interfaces and �fty-eight methods applied to
Web UIs were surveyed and analyzed using the proposed taxonomy. Of these 133 methods, only
29 apply to both Web and WIMP UIs. The applicability of each method was determined based on



13

the types of interfaces a method was used to evaluate in the literature and the author's judgment
of whether or not the method could be used with other types of interfaces. Tables 2.1 and 2.2
combine survey results for both types of interfaces showing method classes (bold entries in the �rst
column) and method types within each class (entries that are not bold in the �rst column). Each
entry in columns two through �ve depicts speci�c UE methods along with the automation support
available and the human e�ort required to employ automation. For some UE methods, more than
one approach will be discussed; hence, the number of methods surveyed is shown in parenthesis
beside the e�ort level.

Some approaches provide automation support for multiple method types (see Appendix
A). Hence, Tables 2.1 and 2.2 contain only 111 methods. Tables 2.1 and 2.2 also depict methods
applicable to both WIMP and Web UIs only once. Table 2.3 provides descriptions of all method
types.

There are major di�erences in automation support among the �ve method classes. Overall,
automation patterns are similar for WIMP and Web interfaces, with the exception that analytical
modeling and simulation are far less explored in the Web domain than for WIMP interfaces (two
vs. sixteen methods). Appendix A shows the information in Tables 2.1 and 2.2 separated by UI
type. Table 2.4 summarizes the number of non-automated and automated capture, analysis, and
critique methods surveyed overall and for each type of interface.

Tables 2.1 and 2.2 show that automation in general is greatly underexplored. Table 2.4
shows that methods without automation support represent 64% of the methods surveyed, while
methods with automation support collectively represent only 36%. Of this 36%, capture methods
represent 15%, analysis methods represent 19% and critique methods represent 2%. All but two
of the capture methods require some level of interface usage; genetic algorithms and information
scent modeling both use simulation to generate usage data for subsequent analysis. Of all of the
surveyed methods, only 29% are free from requirements of formal or informal interface use.

To provide the fullest automation support, software would have to critique interfaces
without requiring formal or informal use. The survey revealed that this level of automation has been
developed for only one method type: guideline review (e.g., [Farenc and Palanque 1999; Lowgren
and Nordqvist 1992; Scholtz and Laskowski 1998]). Guideline review methods automatically detect
and report usability violations and then make suggestions for �xing them (discussed further in
Section 2.6).

Of those methods that support the next level of automation { analysis { Tables 2.1 and
2.2 show that analytical modeling and simulation methods represent the majority. Most of these
methods do not require formal or informal interface use.

The next sections discuss the various UE methods and their automation in more detail.
Some methods are applicable to both WIMP and Web interfaces; however, distinctions are made
where necessary about a method's applicability. The discussion also presents assessments of auto-
mated capture, analysis, and critique techniques using the following criteria:

� E�ectiveness: how well a method discovers usability problems,

� Ease of use: how easy is a method to employ,

� Ease of learning: how easy is a method to learn, and

� Applicability: how widely applicable is a method to WIMP and/or Web UIs other than
those originally applied to.

The e�ectiveness, ease of use, ease of learning, and applicability of automated methods is
highlighted in discussions of each method class.



14

Method Class Automation Type
Method Type None Capture Analysis Critique

Testing
Thinking-aloud Protocol F (1)
Question-asking Protocol F (1)
Shadowing Method F (1)
Coaching Method F (1)
Teaching Method F (1)
Co-discovery Learning F (1)
Performance Measurement F (1) F (8)
Log File Analysis IFM (20)�

Retrospective Testing F (1)
Remote Testing IF (3)

Inspection

Guideline Review IF (6) (8) M (11)y

Cognitive Walkthrough IF (2) F (1)
Pluralistic Walkthrough IF (1)
Heuristic Evaluation IF (1)
Perspective-based Inspection IF (1)
Feature Inspection IF (1)
Formal Usability Inspection F (1)
Consistency Inspection IF (1)
Standards Inspection IF (1)

Inquiry
Contextual Inquiry IF (1)
Field Observation IF (1)
Focus Groups IF (1)
Interviews IF (1)
Surveys IF (1)
Questionnaires IF (1) IF (2)
Self-reporting Logs IF (1)
Screen Snapshots IF (1)
User Feedback IF (1)

Table 2.1: Automation support for WIMP and Web UE methods (Table 1 of 2). A number in parentheses
indicates the number of UE methods surveyed for a particular method type and automation type. The e�ort
level for each method is represented as: minimal (blank), formal (F), informal (I) and model (M). The * for
the IFM entry indicates that either formal or informal interface use is required. In addition, a model may
be used in the analysis. The y indicates that methods may or may not require a model.



15

Method Class Automation Type
Method Type None Capture Analsis Critique

Analytical Modeling
GOMS Analysis M (4) M (2)
UIDE Analysis M (2)
Cognitive Task Analysis M (1)
Task-environment Analysis M (1)
Knowledge Analysis M (2)
Design Analysis M (2)
Programmable User Models M (1)

Simulation
Information Proc. Modeling M (9)
Petri Net Modeling FM (1)
Genetic Algorithm Modeling (1)
Information Scent Modeling M (1)

Table 2.2: Automation support for WIMP and Web UE methods (Table 2 of 2). A number in parentheses
indicates the number of UE methods surveyed for a particular method type and automation type. The e�ort
level for each method is represented as: minimal (blank), formal (F), informal (I) and model (M).

2.5 Usability Testing Methods

Usability testing with real participants is a fundamental evaluation method [Nielsen 1993;
Shneiderman 1998]. It provides an evaluator with direct information about how people use com-
puters and what some of the problems are with the interface being tested. During usability testing,
participants use the system or a prototype to complete a pre-determined set of tasks while the
tester or software records the results of the participants' work. The tester then uses these results
to determine how well the interface supports users' task completion and to derive other measures,
such as the number of errors and task completion time.

Automation has been used predominantly in two ways within usability testing: automated
capture of use data and automated analysis of this data according to some metrics or a model
(referred to as log �le analysis in Table 2.1). In rare cases methods support both automated
capture and analysis of usage data [Al-Qaimari and McRostie 1999; Hong et al. 2001; Uehling and
Wolf 1995].

2.5.1 Usability Testing Methods: Non-automated

This section provides a synopsis of eight non-automated method types. All method types
have been or could be applied to both WIMP and Web UIs and require formal interface usage.
Two testing protocols, thinking-aloud and question-asking, and six non-automated method types
were surveyed; the testing protocols can be used with the other six method types in most cases.
The major di�erences among the testing method types are the actual testing procedure (e.g.,
participants are silent, think aloud, or have the ability to ask an expert questions) and the intended
outcome of testing (e.g., an understanding of the participant's mental model of the system or
quantitative data).

Method types are summarized below. The method type (i.e., how an evaluation is per-
formed) and the method (i.e., speci�c instantiation of a method type) are the same in all cases.
Unless otherwise noted, most discussions are based on [Dix et al. 1998; Hom 1998; Human Factors
Engineering 1999b; Nielsen 1993; Shneiderman 1998].



16

Method Class
Method Type Description

Testing
Thinking-aloud Protocol user talks during test
Question-asking Protocol tester asks user questions
Shadowing Method expert explains user actions to tester
Coaching Method user can ask an expert questions
Teaching Method expert user teaches novice user
Co-discovery Learning two users collaborate
Performance Measurement tester or software records usage data during test
Log File Analysis tester analyzes usage data
Retrospective Testing tester reviews videotape with user
Remote Testing tester and user are not co-located during test

Inspection
Guideline Review expert checks guideline conformance
Cognitive Walkthrough expert simulates user's problem solving
Pluralistic Walkthrough multiple people conduct cognitive walkthrough
Heuristic Evaluation expert identi�es heuristic violations
Perspective-based Inspection expert conducts narrowly focused heuristic evaluation
Feature Inspection expert evaluates product features
Formal Usability Inspection experts conduct formal heuristic evaluation
Consistency Inspection expert checks consistency across products
Standards Inspection expert checks for standards compliance

Inquiry
Contextual Inquiry interviewer questions users in their environment
Field Observation interviewer observes system use in user's environment
Focus Groups multiple users participate in a discussion session
Interviews one user participates in a discussion session
Surveys interviewer asks user speci�c questions
Questionnaires user provides answers to speci�c questions
Self-reporting Logs user records UI operations
Screen Snapshots user captures UI screens
User Feedback user submits comments

Analytical Modeling
GOMS Analysis predict execution and learning time
UIDE Analysis conduct GOMS analysis within a UIDE
Cognitive Task Analysis predict usability problems
Task-environment Analysis assess mapping of user's goals into UI tasks
Knowledge Analysis predict learnability
Design Analysis assess design complexity
Programmable User Models write program that acts like a user

Simulation
Information Proc. Modeling mimic user interaction
Petri Net Modeling mimic user interaction from usage data
Genetic Algorithm Modeling mimic novice user interaction
Information Scent Modeling mimic Web site navigation

Table 2.3: Descriptions of the WIMP and Web UE method types depicted in Table 2.1.



17

Methods Automation Type
Surveyed None Capture Analysis Critique

Overall
Total 30 7 9 1
Percent 64% 15% 19% 2%

WIMP UIs
Total 30 5 8 1
Percent 68% 11% 18% 2%

Web UIs
Total 26 5 4 1
Percent 72% 14% 11% 3%

Table 2.4: Summary of UE methods surveyed for each automation type.

Thinking-aloud Protocol. The thinking-aloud protocol requires participants to verbalize their
thoughts, feelings, and opinions during a usability test. One goal of this approach is to enable
the tester to get a better understanding of the participant's mental model during interaction
with the interface. Critical response and periodic report are two variations of the protocol
wherein the participant is vocal only during the execution of certain pre-determined tasks or
at pre-determined intervals of time, respectively.

Question-asking Protocol. This method is an extension of the thinking-aloud protocol wherein
testers prompt participants by asking direct questions about the interface. The goal of such
questioning is to enable the tester to get an even better understanding of the participant's
mental model of the system.

Coaching Method. The coaching method allows participants to ask any system-related questions
of an expert coach during usability testing. Usually, the tester acts as the expert coach, but
it is possible to have a separate tester serving as a coach. The latter approach may allow
the tester to gain additional usability insight through observing the interaction between the
participant and coach. In cases where an expert user serves as the coach, this also enables the
tester to analyze the expert user's mental model of the system. The main goal of this method
is to determine the information needs of users to provide better training and documentation
in addition to possibly redesigning the interface to eliminate the need for questions in the
�rst place. It is also possible for the tester to control the answers given to questions during
testing to discover what types of answers help users the most.

Teaching Method. For this method, the participant interacts with the system �rst to develop
expertise to subsequently teach a novice user about the system. The novice user serves as a
student and does not actively engage in problem solving. The participant does the problem
solving, explains to the novice user how the system works, and demonstrates a set of pre-
determined tasks. This method enables testers to assess the ease of learning of an interface.

Shadowing Method. Shadowing is an alternative to the thinking-aloud protocol wherein an ex-
pert user sits next to the tester and explains the participant's behavior during the testing
session. Evaluators use this method in situations where it is inappropriate for participants to
think aloud or talk to the tester (e.g., collecting performance measurements).

Co-discovery Learning. During a co-discovery learning session, two participants attempt to per-
form the tasks together while the tester observes their interaction. This approach is similar



18

to the type of collaboration that occurs naturally in other environments, such as at work. As
the participants complete tasks, the tester encourages them to explain what they are thinking
about in a manner similar to the thinking-aloud protocol.

Performance Measurement. The goal of this testing method is to capture quantitative data
about participants' performance when they complete tasks. As such, there is usually no in-
teraction between the tester and participant during the test. Evaluators usually conduct such
testing in a usability lab to facilitate accurate data collection and to minimize interference.
Sometimes this method is combined with other techniques to capture qualitative data as well,
such as retrospective testing (discussed immediately below).

Measurement studies form the foundation of usability testing, since evaluators can use the
results to assess whether the usability goals have been met as well as for competitive analysis.
In the �rst case the evaluator would re-de�ne an abstract performance goal, such as usability,
into a speci�c usability attribute, such as eÆciency of use. After specifying a speci�c usability
attribute, the evaluator can quantify this attribute with a metric (e.g., time to complete a
task, time spent recovering from errors, etc.) and devise a plan for measuring this metric
in the interface and collecting the necessary performance data. Without automated tools,
this collection is typically accomplished by taking notes or video taping testing sessions and
subsequently reviewing the videotape to compute performance measures.

MUSiC (Metrics for Usability Standards in Computing) [Bevan and Macleod 1994; Macleod
et al. 1997] is a rigorous performance measurement method developed by a consortium of
European institutions, including Serco Usability Services (formerly the National Physical
Laboratory), the University College Cork, and the HUSAT (Human Sciences and Advanced
Technology) Institute. Applying the methodology entails: conducting a formal usability
context analysis (i.e., determining who the users are, how they use the UI, and in what
situations they use it) and following the performance measurement method [Rengger et al.
1993] as prescribed. MUSiC includes tools to support automated analysis of video recording
using DRUM (Diagnostic Recorder for Usability Measurement, discussed in Section 2.5.2)
[Macleod and Rengger 1993] as well as collecting subjective usability data via the SUMI
(Software Usability Measurement Inventory, discussed in Section 2.7.2) [Porteous et al. 1993]
questionnaire.

Retrospective Testing. This method is a followup to any other videotaped testing session wherein
the tester and participant review the videotape together. During this review, the tester asks
the participant questions regarding her behavior during the test. The goal of this review is to
collect additional information from the usability test. Although such testing can be valuable,
it substantially increases the cost of usability testing because each test takes at least twice as
long to conduct.

2.5.2 Usability Testing Methods: Automated Capture

Many usability testing methods require the recording of actions a user makes while exer-
cising an interface. This can be done by an evaluator taking notes while the participant uses the
system, either live or by repeatedly viewing a videotape of the session; both are time-consuming
activities. As an alternative, automated capture techniques can log user activity automatically.
An important distinction can be made between information that is easy to record but diÆcult
to interpret, such as keystrokes, and information that is meaningful but diÆcult to automatically



19

Method Class: Testing
Automation Type: Capture

Method Type: Performance Measurement - software records usage data during
test (8 methods)

UE Method UI E�ort
Log low-level events ([Hammontree et al. 1992]) WIMP F
Log UIMS events (UsAGE, IDCAT) WIMP F
Log system-level events (KALDI) WIMP F
Log Web server requests ([Scholtz and Laskowski 1998]) Web F
Log client-side activities (WebVIP, WET) Web F
Log Web proxy requests (WebQuilt) Web F

Method Type: Remote Testing - tester and user are not co-located (3 methods)
UE Method UI E�ort
Employ same-time di�erent-place testing (KALDI) WIMP, Web IF
Employ di�erent-time di�erent-place testing (journaled WIMP, Web IF
sessions)
Analyze a Web site's information organization (WebCAT) Web IF

Table 2.5: Synopsis of automated capture support for usability testing methods.

label, such as task completion. Automated capture approaches vary with respect to the granularity
of information captured.

Within the usability testing class of UE, automated capture of usage data is supported by
two method types: performance measurement and remote testing. Both require the instrumentation
of a user interface, incorporation into a user interface management system (UIMS), or capture at the
system level. A UIMS [Olsen, Jr. 1992] is a software library that provides high-level abstractions for
specifying portable and consistent interface models that are then compiled into UI implementations
on each platform similarly to Java programs. Table 2.5 provides a synopsis of automated capture
methods discussed in the remainder of this section. Support available for WIMP and Web UIs is
discussed separately.

Usability Testing Methods: Automated Capture { WIMP UIs

Performance measurement methods record usage data (e.g., a log of events and times when
events occurred) during a usability test. Video recording and event logging tools [Al-Qaimari and
McRostie 1999; Hammontree et al. 1992; Uehling and Wolf 1995] are available to automatically and
accurately align timing data with user interface events. Some event logging tools (e.g., [Hammontree
et al. 1992]) record events at the keystroke or system level. Recording data at this level produces
voluminous log �les and makes it diÆcult to map recorded usage into high-level tasks.

As an alternative, two systems log events within a UIMS. UsAGE (User Action Graphing
E�ort)4 [Uehling and Wolf 1995] enables the evaluator to replay logged events, meaning it can
replicate logged events during playback. This requires that the same study data (databases, docu-
ments, etc.) be available during playback as was used during the usability test. IDCAT (Integrated
Data Capture and Analysis Tool) [Hammontree et al. 1992] logs events and automatically �lters
and classi�es them into meaningful actions. This system requires a video recorder to synchronize
taped footage with logged events. KALDI (Keyboard/mouse Action Logger and Display Instru-
ment) [Al-Qaimari and McRostie 1999] supports event logging and screen capturing via Java and

4This method is not to be confused with the USAGE analytical modeling approach discussed in Section 2.8.



20

does not require special equipment. Both KALDI and UsAGE also support log �le analysis (see
Section 2.5.3).

Remote testing methods enable testing between a tester and participant who are not co-
located. In this case the evaluator is not able to observe the user directly, but can gather data
about the process over a computer network. Remote testing methods are distinguished according
to whether or not a tester observes the participant during testing or not. Same-time di�erent-place
and di�erent-time di�erent-place are two major remote testing approaches [Hartson et al. 1996].

In same-time di�erent-place or remote-control testing the tester observes the participant's
screen through network transmissions (e.g., using PC Anywhere or Timbuktu) and may be able to
hear what the participant says via a speaker telephone or a microphone aÆxed to the computer.
Software makes it possible for the tester to interact with the participant during the test, which
is essential for techniques like the question-asking or thinking aloud protocols that require such
interaction.

The tester does not observe the user during di�erent-time di�erent-place testing. An
example of this approach is the journaled session [Nielsen 1993], in which software guides the
participant through a testing session and logs the results. Evaluators can use this approach with
prototypes to get feedback early in the design process, as well as with released products. In the early
stages, evaluators distribute disks containing a prototype of a software product and embedded code
for recording users' actions. Users experiment with the prototype and return the disks to evaluators
upon completion. It is also possible to embed dialog boxes within the prototype to record users'
comments or observations during usage. For released products, evaluators use this method to
capture statistics about the frequency with which the user has used a feature or the occurrence of
events of interest (e.g., error messages). This information is valuable for optimizing frequently-used
features and the overall usability of future releases.

Remote testing approaches allow for wider testing than traditional methods, but evalua-
tors may experience technical diÆculties with hardware and/or software components (e.g., inability
to correctly con�gure monitoring software or network failures). This can be especially problem-
atic for same-time di�erent-place testing where the tester needs to observe the participant during
testing. Most techniques also have restrictions on the types of UIs to which they can be applied.
This is mainly determined by the underlying hardware (e.g., PC Anywhere only operates on PC
platforms) [Hartson et al. 1996]. KALDI, mentioned above, also supports remote testing. Since it
was developed in Java, evaluators can use it for same- and di�erent-time testing of Java applications
on a wide range of computing platforms.

Usability Testing Methods: Automated Capture { Web UIs

The Web enables remote testing and performance measurement on a much larger scale
than is feasible with WIMP interfaces. Both same-time di�erent-place and di�erent-time di�erent-
place approaches can be employed for remote testing of Web UIs. Similar to journaled sessions,
Web servers maintain usage logs and automatically generate a log �le entry for each request. These
entries include the IP address of the requester, request time, name of the requested Web page, and
in some cases the URL of the referring page (i.e., where the user came from). Server logs cannot
record user interactions that occur only on the client side (e.g., use of within-page anchor links or
back button), and the validity of server log data is questionable due to caching by proxy servers
and browsers [Etgen and Cantor 1999; Scholtz and Laskowski 1998]. Server logs may not reect
usability, especially since these logs are often diÆcult to interpret [Schwartz 2000] and users' tasks
may not be discernible [Byrne et al. 1999; Schwartz 2000].

Client-side logs capture more accurate, comprehensive usage data than server-side logs



21

because they allow all browser events to be recorded. Such logging may provide more insight about
usability. On the downside, it requires every Web page to be modi�ed to log usage data, or else
use of an instrumented browser or special proxy server.

The NIST WebMetrics tool suite [Scholtz and Laskowski 1998] captures client-side usage
data. This suite includes WebVIP (Web Visual Instrumentor Program), a visual tool that enables
the evaluator to add event handling code to Web pages. This code automatically records the page
identi�er and a time stamp in an ASCII �le every time a user selects a link. (This package also
includes a visualization tool, VISVIP [Cugini and Scholtz 1999], for viewing logs collected with
WebVIP; see Section 2.5.3.) Using this client-side data, the evaluator can accurately measure time
spent on tasks or particular pages as well as study use of the back button and user clickstreams.
Despite its advantages over server-side logging, WebVIP requires the evaluator to make a copy
of an entire Web site, which could lead to invalid path speci�cations and other diÆculties with
getting the copied site to function properly. The evaluator must also add logging code to each
individual link on a page. Since WebVIP only collects data on selected HTML links, it does not
record interactions with other Web objects, such as forms. It also does not record usage of external
or non-instrumented links.

Similar to WebVIP, the Web Event-logging Tool (WET) [Etgen and Cantor 1999] supports
the capture of client-side data, including clicks on Web objects, window resizing, typing in a form
object and form resetting. WET interacts with Microsoft Internet Explorer and Netscape Navigator
to record browser event information, including the type of event, a time stamp, and the document-
window location. This gives the evaluator a more complete view of the user's interaction with a
Web interface than WebVIP. WET does not require as much e�ort to employ as WebVIP, nor does
it su�er from the same limitations. To use this tool, the evaluator speci�es events (e.g., clicks,
changes, loads, and mouseovers) and event handling functions in a text �le on the Web server;
sample �les are available to simplify this step. The evaluator must also add a single call to the text
�le within the <head> tag of each Web page to be logged. Currently, the log �le analysis for both
WebVIP and WET is manual. Future work has been proposed to automate this analysis.

As an alternative to server-side and client-side logging, WebQuilt [Hong et al. 2001] uses
proxy-based logging to capture usage data. The system automatically captures Web server requests
using a special proxy server, logs requests, and subsequently routes requests to the Web server. All
of the links in Web pages are also redirected to the proxy server; this eliminates the need for users
to manually con�gure their browsers to route requests to the proxy. The system captures more
accurate site usage details (e.g., use of the back button) than server-side logging, makes it possible
to run usability tests on any Web site (e.g., for competitive analysis), and makes it possible to
track participants accurately, since extra information can be encoded in the study URL. Although
the system does not capture many client-side details, such as the use of page elements or window
resizing, it does simplify instrumenting a site for logging, since this is done automatically. The
WebQuilt system also supports task-based analysis and visualization of captured usage data (see
Section 2.5.3).

The NIST WebMetrics tool suite also includes WebCAT (Category Analysis Tool), a tool
that aids in Web site category analysis, by a technique sometimes known as card sorting [Nielsen
1993]. In non-automated card sorting, the evaluator (or a team of evaluators) writes concepts
on pieces of paper, and users group the topics into piles. The evaluator manually analyzes these
groupings to determine a good category structure. WebCAT allows the evaluator to test proposed
topic categories for a site via a category matching task (a variation of card-sorting where users
assign concepts to prede�ned categories); this task can be completed remotely by users. Results
are compared to the designer's category structure, and the evaluator can use the analysis to inform
the best information organization for a site. WebCAT enables wider testing and faster analysis than



22

traditional card sorting, and helps make the technique scale for a large number of topic categories.

Usability Testing Methods: Automated Capture { Discussion

Automated capture methods represent important �rst steps toward informing UI improve-
ments { they provide input data for analysis and in the case of remote testing, enable the evaluator
to collect data for a larger number of users than traditional methods. Without this automation,
evaluators would have to manually record usage data, expend considerable time reviewing video-
taped testing sessions or in the case of the Web, rely on questionable server logs. Methods such
as KALDI and WET capture high-level events that correspond to speci�c tasks or UI features.
KALDI also supports automated analysis of captured data as discussed below.

Table 2.5 summarizes performance measurement and remote testing methods discussed in
this section. It is diÆcult to assess the ease of use and learning of these approaches, especially ID-
CAT and remote testing approaches that require integration of hardware and software components,
such as video recorders and logging software. For client-side Web site logging, WET appears to
be easier to use and learn than WebVIP. It requires the creation of an event handling �le and the
addition of a small block of code in each Web page header, while WebVIP requires the evaluator to
add code to every link on all Web pages. WET also enables the evaluator to capture more compre-
hensive usage data than WebVIP. WebQuilt is easier to use and learn than WET because a proxy
server automatically instruments a site for logging; however, it does not capture the same level of
detail as client-side logging. WebCAT appears straightforward to use and learn for topic category
analysis. Both remote testing and performance measurement techniques have restrictions on the
types of UIs to which they can be applied. This is mainly determined by the underlying hardware
(e.g., PC Anywhere only operates on PC platforms) or UIMS, although KALDI can potentially be
used to evaluate Java applications on a wide range of platforms.

2.5.3 Usability Testing Methods: Automated Analysis

Log �le analysis methods automate the analysis of data captured during formal or informal
interface use. Since Web servers automatically log client requests, log �le analysis is a heavily used
methodology for evaluating Web interfaces [Drott 1998; Fuller and de Graa� 1996; Hochheiser
and Shneiderman 2001; Sullivan 1997]. The survey revealed four general approaches for analyzing
WIMP and Web log �les: metric-based, pattern-matching, task-based, and inferential. Table 2.6
provides a synopsis of automated analysis methods discussed in the remainder of this section.
Support available for the four general approaches is discussed separately.

Usability Testing Methods: Automated Analysis { Metric-Based Analysis of Log Files

Metric-based approaches generate quantitative performance measurements. Three ex-
amples for WIMP interfaces are DRUM [Macleod and Rengger 1993], the MIKE UIMS [Olsen,
Jr. and Halversen 1988], and AMME (Automatic Mental Model Evaluator) [Rauterberg 1995;
Rauterberg 1996b; Rauterberg and Aeppili 1995]. DRUM enables the evaluator to review a video
tape of a usability test and manually log starting and ending points for tasks. DRUM processes
this log and derives several measurements, including: task completion time, user eÆciency (i.e.,
e�ectiveness divided by task completion time), and productive period (i.e., portion of time the
user did not have problems). DRUM also synchronizes the occurrence of events in the log with
videotaped footage, thus speeding up video analysis.

The MIKE UIMS enables an evaluator to assess the usability of a UI speci�ed as a model
that can be rapidly changed and compiled into a functional UI. MIKE captures usage data and



23

Method Class: Testing
Automation Type: Analysis

Method Type: Log File Analysis - analyze usage data (20 methods)
UE Method UI E�ort
Use metrics during log �le analysis (DRUM, MIKE WIMP IF
UIMS, AMME)
Use metrics during log �le analysis (Service Metrics, Web IF
[Bacheldor 1999])
Use pattern matching during log �le analysis (MRP) WIMP IF
Use task models during log �le analysis (IBOT, QUIP, WIMP IF
WebQuilt, KALDI, UsAGE)
Use task models and pattern matching during log WIMP IFM

�le analysis (�EMA, USINE, RemUSINE)
Visualization of log �les ([Guzdial et al. 1994]) WIMP IF
Statistical analysis or visualization of log �les (traÆc- Web IF
and time-based analyses, VISVIP, Star�eld and Dome
Tree visualizations)

Table 2.6: Synopsis of automated analysis support for usability testing methods.

generates a number of general, physical, logical, and visual metrics, including performance time,
command frequency, the number of physical operations required to complete a task, and required
changes in the user's focus of attention on the screen. MIKE also calculates these metrics separately
for command selection (e.g., traversing a menu, typing a command name, or hitting a button)
and command speci�cation (e.g., entering arguments for a command) to help the evaluator locate
speci�c problems within the UI.

AMME employs petri nets [Petri 1973] to reconstruct and analyze the user's problem
solving process. It requires a specially-formatted log �le and a manually-created system description
�le (i.e., a list of interface states and a state transition matrix) to generate the petri net. It then
computes measures of behavioral complexity (i.e., steps taken to perform tasks), routinization (i.e.,
repetitive use of task sequences), and ratios of thinking vs. waiting time. User studies with novices
and experts validated these quantitative measures and showed behavioral complexity to correlate
negatively with learning (i.e., less steps are taken to solve tasks as a user learns the interface)
[Rauterberg and Aeppili 1995]. Hence, the behavioral complexity measure provides insight on
interface complexity. It is also possible to simulate the generated petri net (see Section 2.9) to
further analyze the user's problem solving and learning processes. Multidimensional scaling and
Markov analysis tools are available for comparing multiple petri nets (e.g., nets generated from
novice and expert user logs). Since AMME processes log �les, it could easily be extended to Web
interfaces.

For the Web, site analysis tools developed by Service Metrics [Service Metrics 1999] and
others [Bacheldor 1999] allow evaluators to pinpoint performance bottlenecks, such as slow server
response time, that may negatively impact the usability of a Web site. Service Metrics' tools,
for example, can collect performance measures from multiple geographical locations under various
access conditions. In general, performance measurement approaches focus on server and network
performance, but provide little insight into the usability of the Web site itself.



24

Figure 2.3: QUIP usage pro�le contrasting task ows for two users to the designer's task ow (diagonal
shading) [Helfrich and Landay 1999]. Each node represents a user action, and arrows indicate actions taken by
users. The width of arrows denotes the fraction of users completing actions, while the color of arrows reects
the average time between actions (darker colors correspond to longer time). Reprinted with permission of
the authors.

Usability Testing Methods: Automated Analysis { Pattern-Matching Analysis of Log
Files

Pattern-matching approaches, such as MRP (Maximum Repeating Pattern) [Siochi and
Hix 1991], analyze user behavior captured in logs. MRP detects and reports repeated user ac-
tions (e.g., consecutive invocations of the same command and errors) that may indicate usability
problems. Studies with MRP showed the technique to be useful for detecting problems with ex-
pert users, but additional data pre�ltering was required for detecting problems with novice users.
Whether the evaluator performed this pre�ltering or it was automated is unclear in the literature.

Three evaluation methods employ pattern matching in conjunction with task models.
These methods are discussed immediately below.

Usability Testing Methods: Automated Analysis { Task-Based Analysis of Log Files

Task-based approaches analyze discrepancies between the designer's anticipation of the
user's task model and what a user actually does while using the system. The IBOT system [Zettle-
moyer et al. 1999] automatically analyzes log �les to detect task completion events. The IBOT
system interacts with Windows operating systems to capture low-level window events (e.g., key-
board and mouse actions) and screen bu�er information (i.e., a screen image that can be processed
to automatically identify widgets). The system then combines this information into interface ab-
stractions (e.g., menu select and menubar search operations). Evaluators can use the system to
compare user and designer behavior on these tasks and to recognize patterns of ineÆcient or in-
correct behaviors during task completion. Without such a tool, the evaluator has to study the log
�les and do the comparison manually. Future work has been proposed to provide critique support.

The QUIP (Quantitative User Interface Pro�ling) tool [Helfrich and Landay 1999] and
KALDI [Al-Qaimari and McRostie 1999] (see previous section) provide more advanced approaches
to task-based, log �le analysis for Java UIs. Unlike other approaches, QUIP aggregates traces of
multiple user interactions and compares the task ows of these users to the designer's task ow.
QUIP encodes quantitative time-based and trace-based information into directed graphs (see Figure
2.3). For example, the average time between actions is indicated by the color of each arrow, and the
proportion of users who performed a particular sequence of actions is indicated by the width of each
arrow. The designer's task ow is indicated by the diagonal shading in Figure 2.3. Currently, the
evaluator must instrument the UI to collect the necessary usage data, and must manually analyze
the graphs to identify usability problems.

WebQuilt [Hong et al. 2001] provides a graphical depiction of usage data captured via a



25

Figure 2.4: WebQuilt visualization contrasting task ows for twelve users to the designer's task ow (path
across the top with thick shading) [Hong et al. 2001]. The circle on the left shows the start of the task, while
the circle on the right shows the end of the task. Each thumbnail corresponds to a page in the Web site,
and arrows indicate actions taken by users. The width of arrows denotes the fraction of users traversing the
path, while the color of arrows reects the average time users spent on pages before clicking a link (darker
colors correspond to longer time). The interface enables evaluators to view usage data at di�erent levels of
detail. Reprinted with permission of the authors.

special proxy server. The visualization is very similar to QUIP, in that it aggregates usage data
and summarizes task completion with arrows showing actions taken by users, the percentages of
users taking the actions (width), and the average times users spent on pages before selecting links
(color). WebQuilt also enables the evaluator to view the usage data at multiple levels of detail
using a zooming interface. For example, if users spent a considerable amount of time on a Web
page, the evaluator could view the actual page within the interface.

KALDI captures usage data and screen shots for Java applications. It also enables the
evaluator to classify tasks (both manually and via automatic �lters), compare user performance on
tasks, and playback synchronized screen shots. It depicts logs graphically to facilitate analysis.

UsAGE [Uehling and Wolf 1995], which also supports logging usage data within a UIMS,
provides a similar graphical presentation for comparing event logs for expert and novice users.
However, graph nodes are labeled with UIMS event names, thus making it diÆcult to map events
to speci�c interface tasks. To mitigate this shortcoming, UsAGE allows the evaluator to replay
recorded events in the interface.

Several systems incorporate pattern-matching (see discussion above) into their analyses.
This combination results in the most advanced log �le analysis of all of the approaches surveyed.
These systems include �EMA (Automatic Analysis Mechanism for the Ergonomic Evaluation of
User Interfaces) [Balbo 1996], USINE (USer Interface Evaluator) [Lecerof and Patern�o 1998], and
RemUSINE (Remote USer Interface Evaluator) [Patern�o and Ballardin 1999], all discussed below.



26

�EMA uses a manually-created data-ow task model and standard behavior heuristics
to ag usage patterns that may indicate usability problems. �EMA extends the MRP approach
(repeated command execution) to detect additional patterns, including immediate task cancellation,
shifts in direction during task completion, and discrepancies between task completion and the task
model. �EMA outputs results in an annotated log �le, which the evaluator must manually inspect
to identify usability problems. Application of this technique to the evaluation of ATM (Automated
Teller Machine) usage corresponded with problems identi�ed using standard heuristic evaluation
[Balbo 1996].

USINE [Lecerof and Patern�o 1998] employs the ConcurTaskTrees [Patern�o et al. 1997]
notation to express temporal relationships among UI tasks (e.g., enabling, disabling, and synchro-
nization). Using this information, USINE looks for precondition errors (i.e., task sequences that
violate temporal relationships) and also reports quantitative metrics (e.g., task completion time)
and information about task patterns, missing tasks, and user preferences reected in the usage
data. Studies with a graphical interface showed that USINE's results correspond with empirical
observations and highlight the source of some usability problems. To use the system, evaluators
must create task models using the ConcurTaskTrees editor as well as a table specifying mappings
between log entries and the task model. USINE processes log �les and outputs detailed reports and
graphs to highlight usability problems. RemUSINE [Patern�o and Ballardin 1999] is an extension
that analyzes multiple log �les (typically captured remotely) to enable comparison across users.

Usability Testing Methods: Automated Analysis { Inferential Analysis of Log Files

Inferential analysis of Web log �les includes both statistical and visualization techniques.
Statistical approaches include traÆc-based analysis (e.g., pages-per-visitor or visitors-per-page) and
time-based analysis (e.g., click paths and page-view durations) [Drott 1998; Fuller and de Graa�
1996; Sullivan 1997; Theng and Marsden 1998]. Some methods require manual pre-processing or
�ltering of the logs before analysis. Furthermore, the evaluator must interpret reported measures
to identify usability problems. Software tools, such as WebTrends [WebTrends Corporation 2000],
facilitate analysis by presenting results in graphical and report formats.

Statistical analysis is largely inconclusive for Web server logs, since they provide only a
partial trace of user behavior and timing estimates may be skewed by network latencies. Server log
�les are also missing valuable information about what tasks users want to accomplish [Byrne et al.
1999; Schwartz 2000]. Nonetheless, statistical analysis techniques have been useful for improving
usability and enable ongoing, cost-e�ective evaluation throughout the life of a site [Fuller and
de Graa� 1996; Sullivan 1997].

Visualization is also used for inferential analysis of WIMP andWeb log �les [Chi et al. 2000;
Cugini and Scholtz 1999; Guzdial et al. 1994; Hochheiser and Shneiderman 2001]. It enables
evaluators to �lter, manipulate, and render log �le data in a way that ideally facilitates analysis.
[Guzdial et al. 1994] propose several techniques for analyzing WIMP log �les, such as color coding
patterns and command usage, tracking screen updates, and tracking mouseclick locations and depth
(i.e., number of times the user clicked the mouse in screen areas). However, there is no discussion
of how e�ective these approaches are in supporting analysis.

Star�eld visualization [Hochheiser and Shneiderman 2001] is one approach that enables
evaluators to interactively explore Web server log data to gain an understanding of human factors
issues related to visitation patterns. This approach combines the simultaneous display of a large
number of individual data points (e.g., URLs requested versus time of requests) in an interface that
supports zooming, �ltering, and dynamic querying [Ahlberg and Shneiderman 1994]. Visualizations
provide a high-level view of usage patterns (e.g., usage frequency, correlated references, bandwidth



27

usage, HTTP errors, and patterns of repeated visits over time) that the evaluator must explore
to identify usability problems. It would be bene�cial to employ a statistical analysis approach to
study traÆc, clickstreams, and page views prior to exploring visualizations.

The Dome Tree visualization [Chi et al. 2000] provides an insightful representation of
simulated (see Section 2.9) and actual Web usage captured in server log �les. This approach maps
a Web site into a three dimensional surface representing the hyperlinks (see top part of Figure
2.5). The location of links on the surface is determined by a combination of content similarity, link
usage, and link structure of Web pages. The visualization highlights the most commonly traversed
subpaths. An evaluator can explore these usage paths to possibly gain insight about the information
\scent" (i.e., common topics among Web pages on the path) as depicted in the bottom window of
Figure 2.5. This additional information may help the evaluator infer what the information needs
of site users are, and more importantly, may help infer whether the site satis�es those needs. The
Dome Tree visualization also reports a crude path traversal time based on the sizes of pages (i.e.,
number of bytes in HTML and image �les) along the path. Server log accuracy limits the extent
to which this approach can successfully indicate usability problems. As is the case for Star�eld
visualization, it would be bene�cial to statistically analyze log �les prior to using this approach.

VISVIP [Cugini and Scholtz 1999] is a three-dimensional tool for visualizing log �les
compiled by WebVIP during usability testing (see previous section). Figure 2.6 shows VISVIP's
Web site (top graph) and usage path (bottom graph) depictions to be similar to the Dome Tree
visualization approach. VISVIP generates a 2D layout of the site where adjacent nodes are placed
closer together than non-adjacent nodes. A third dimension reects timing data as a dotted vertical
bar at each node; the height is proportional to the amount of time. VISVIP also provides animation
facilities for visualizing path traversal. Since WebVIP logs reect actual task completion, prior
statistical analysis is not necessary for VISVIP usage.

Usability Testing Methods: Automated Analysis { Discussion

Table 2.6 summarizes log �le analysis methods discussed in this section. Although the
techniques vary widely on the four assessment criteria (e�ectiveness, ease of use, ease of learning,
and applicability), all approaches o�er substantial bene�ts over the alternative { time-consuming,
unaided analysis of potentially large amounts of raw data. Hybrid task-based pattern-matching
techniques like USINE may be the most e�ective (i.e., provide clear insight for improving usability
via task analysis), but they require additional e�ort and learning time over simpler pattern-matching
approaches; this additional e�ort is mainly in the development of task models. Although pattern-
matching approaches are easier to use and learn, they only detect problems for pre-speci�ed usage
patterns.

Metric-based approaches in the WIMP domain have been e�ective at associating mea-
surements with speci�c interface aspects, such as commands and tasks, which can then be used
to identify usability problems. AMME also helps the evaluator to understand the user's problem
solving process and conduct simulation studies. However, metric-based approaches require the
evaluator to conduct more analysis to ascertain the source of usability problems than task-based
approaches. Metric-based techniques in the Web domain focus on server and network performance,
which provides little usability insight. Similarly, inferential analysis of Web server logs is limited
by their accuracy and may provide inconclusive usability information.

Most of the techniques surveyed in this section could be applied to WIMP and Web UIs
other than those demonstrated on, with the exception of the MIKE UIMS and UsAGE, which
require a WIMP UI to be developed within a special environment. AMME could be employed for
both Web and WIMP UIs, provided log �les and system models are available.



28

Figure 2.5: Dome Tree visualization [Chi et al. 2000] of a Web site with a usage path displayed as a series
of connected lines across the left side. The bottom part of the �gure displays information about the usage
path, including an estimated navigation time and information scent (i.e., common keywords along the path).
Reprinted with permission of the authors.



29

Figure 2.6: VISVIP visualization [Cugini and Scholtz 1999] of a Web site (top part). The bottom part of
the �gure displays a usage path (series of directed lines on the left site) laid over the site. Reprinted with
permission of the authors.



30

2.6 Inspection Methods

A usability inspection is an evaluation methodology whereby an evaluator examines the
usability aspects of a UI design with respect to its conformance to a set of guidelines. Guidelines can
range from highly speci�c prescriptions to broad principles. Unlike other UE methods, inspections
rely solely on the evaluator's judgment. A large number of detailed usability guidelines have been
developed for WIMP interfaces [Open Software Foundation 1991; Smith and Mosier 1986] and
Web interfaces [Comber 1995; Detweiler and Omanson 1996; Levine 1996; Lynch and Horton 1999;
Web Accessibility Initiative 1999]. Common non-automated inspection techniques are heuristic
evaluation [Nielsen 1993] and cognitive walkthroughs [Lewis et al. 1990].

Designers have historically experienced diÆculties following design guidelines
[Borges et al. 1996; de Souza and Bevan 1990; Lowgren and Nordqvist 1992; Smith 1986]. One
study has demonstrated that designers are biased towards aesthetically pleasing interfaces, re-
gardless of eÆciency [Sears 1995]. Because designers have diÆculty applying design guidelines,
automation has been predominately used within the inspection class to objectively check guideline
conformance. Software tools assist evaluators with guideline review by automatically detecting and
reporting usability violations and in some cases making suggestions for �xing them [Balbo 1995;
Farenc and Palanque 1999]. Automated capture, analysis, and critique support is available for the
guideline review and cognitive walkthrough method types, as described in the remainder of this
section.

2.6.1 Inspection Methods: Non-automated

Nine inspection method types were surveyed; they vary based on the goals of the inspection
(e.g., guideline and standard conformance), the evaluative criteria (e.g., guidelines and standards),
the evaluative process (e.g., formal or informal, task-based, or self-guided exploration), and how
judgment is derived (e.g., individually or as a group). The fundamental goal of all inspection
methods is to �nd usability problems in an existing interface design and then use these problems
to make recommendations for improving the usability of an interface. Each inspection method has
more speci�c objectives that aide in choosing the most appropriate method. For example, if the
goal of a usability evaluation is to determine an interface's conformance to established guidelines,
then the evaluator would use the guideline review method.

The nine inspection method types also di�er in usability from the evaluator's perspective
(i.e., how easy it is to learn and apply a method). Heuristic and perspective-based evaluations are
considered to be easy to learn and apply, while cognitive walkthrough is not as easy to learn or
apply [Nielsen and Mack 1994; Zhang et al. 1998]. Studies have also shown that the simpler the
technique, the more e�ective the method is for identifying usability problems [Nielsen and Mack
1994]. For example, several studies have contrasted heuristic evaluation and cognitive walkthrough
and reported heuristic evaluation to be more e�ective [Nielsen and Mack 1994].

In most cases, the method type is the same as the method. All of the methods require
formal or informal interface usage and have been applied or could be applied to both WIMP
and Web UIs. Unless otherwise speci�ed, most discussions below are based on [Dix et al. 1998;
Hom 1998; Human Factors Engineering 1999b; Nielsen 1993; Nielsen and Mack 1994; Shneiderman
1998].

Guideline Review. In guideline reviews evaluators check a WIMP interface for conformance with
a comprehensive and sometimes large number (e.g., 1000 or more) of established usability
guidelines. There are several accepted guidelines, including the Smith and Mosier guidelines
[Smith and Mosier 1986] and the Motif style guides [Open Software Foundation 1991].



31

Guideline review is also actively used to evaluate Web interfaces. Many corporations have
developed their own guidelines and there have been several e�orts to develop a standard set
of guidelines. Keevil [1998] presents a set of guidelines as a list of yes/no questions about
the organization, user-oriented tasks, and technical content of a Web site. After answering
these questions in a spreadsheet or Web form, a usability index can be computed for a site.
Amb�uhler and Lindenmeyer [1999] use guidelines to compute accessibility measurements (i.e.,
how easy is it to access a page without special hardware or software). Lohse and Spiller [1998]
use regression modeling on a set of 32 guidelines to predict store traÆc and dollar sales as
a function of interface features, such as the number of links into the store and number of
products. Finally, Rossi et al. [1999] propose guidelines to assist designers with determining
the best navigation structure for a site. Currently, all of these approaches require manual
evaluation.

Ratner et al. [1996] question the validity of HTML usability guidelines, since most HTML
guidelines have not been subjected to a rigorous development process as established guidelines
for WIMP interfaces. Analysis of 21 HTML guidelines showed little consistency among them,
with 75% of recommendations appearing in only one style guide. Furthermore, only 20% of
HTML-relevant recommendations from established WIMP guidelines existed in the 21 HTML
style guides.

Cognitive Walkthrough. Cognitive walkthrough involves one or more evaluators exploring an
interface, prototype, or paper mock-up by going through a pre-determined set of tasks and
assessing the understandability and ease of learning for each task. During the walkthrough of
a task, the evaluator(s) attempts to simulate a user's problem-solving process while examining
each action required. The evaluator attempts to construct a credible success story for each
step of the task. Otherwise, the evaluator constructs a detailed failure story.

Cognitive walkthroughs require intensive documentation e�ort. A modi�ed version, cognitive
jogthrough [Rowley and Rhoades 1992], was developed to expedite recording the walkthrough
session. In cognitive jogthrough, the session is videotaped and logging software is used to
mark key events. Thus, the videotape can be reviewed afterwards to document the session.

Pluralistic Walkthrough. This is a variation of the cognitive walkthrough inspection method
wherein representative users, evaluators, and developers inspect the interface as a group. The
goal of this method is to step through usage scenarios and discuss usability issues that arise
in the scenario steps.

Heuristic Evaluation. In heuristic evaluation one or more evaluators independently evaluate an
interface using a list of heuristics. The outcome of this evaluation is typically a list of possible
usability problems. After the evaluators independently evaluate the interface, the evaluators
aggregate their �ndings and associate severity ratings with each potential usability problem.
Heuristic evaluation is the most informal inspection method [Nielsen and Mack 1994], mainly
because it relies on a small set of usability criteria. It is also one of the main discount (i.e.,
cheap, fast, and easy to use) usability methods employed [Nielsen and Mack 1994].

Perspective-based Inspection. Perspective-based inspection [Zhang et al. 1998] is a variation of
heuristic evaluation. For this method, evaluators divide a list of usability issues into di�erent
perspectives and focus on only one perspective or subset of heuristics during an inspection
session. A perspective is a point of view consisting of a list of inspection questions and a
speci�c procedure for conducting the inspection. Zhang et al. [1998] have shown that this



32

Method Class: Inspection
Automation Type: Capture

Method Type: Cognitive Walkthrough - expert simulates user's problem
solving (1 method)

UE Method UI E�ort
Software assists the expert with documenting a cognitive WIMP F
walkthrough

Table 2.7: Synopsis of automated capture support for inspection methods.

approach improves the e�ectiveness of evaluators within each perspective as well as overall,
in comparison to heuristic evaluation.

Feature Inspection. The purpose of this evaluation method is to inspect a feature set of a product
and to analyze the availability, understandability, and other functionality aspects for each
feature. Evaluators use a list of product features along with scenarios for such inspections.
The documentation sta� usually conducts feature inspections.

Formal Usability Inspection. Formal usability inspection is an adaptation of traditional soft-
ware inspection to usability evaluation. The inspection procedure is fairly similar to heuristic
evaluation and involves a diverse team of inspectors (e.g., developers, designers, documenters,
trainers, technical support personnel, and possibly usability experts). The only di�erence is
the formality associated with the inspection (i.e., assigned roles and a formal six-step process
to follow).

Consistency Inspection. Evaluators use this method to determine a consistent interface appear-
ance and functionality that they can then use to assess the consistency of interfaces across
multiple products in a family.

Standards Inspection. In this inspection method an evaluator compares components of an inter-
face to a list of industry standards to assess the interface's compliance with these standards.
This inspection method is usually aimed at ensuring a product's market conformance.

2.6.2 Inspection Methods: Automated Capture

Table 2.7 summarizes capture support for inspection methods { namely, a system devel-
oped to assist an evaluator with a cognitive walkthrough. During a cognitive walkthrough, an
evaluator attempts to simulate a user's problem-solving process while examining UI tasks. At each
step of a task, the evaluator assesses whether a user would succeed or fail to complete the step.
Hence, the evaluator produces extensive documentation during this analysis. There was an early
attempt to \automate" cognitive walkthroughs by prompting evaluators with walkthrough ques-
tions and enabling evaluators to record their analyses in HyperCard. Unfortunately, evaluators
found this approach too cumbersome and time-consuming to employ [Rieman et al. 1991].

2.6.3 Inspection Methods: Automated Analysis

Table 2.8 provides a synopsis of automated analysis methods for inspection-based usability
evaluation, discussed in detail in the remainder of this section. All of the methods require minimal
e�ort to employ; this is denoted with a blank entry in the e�ort column. Support available for
WIMP and Web UIs is discussed separately.



33

Method Class: Inspection
Automation Type: Analysis

Method Type: Guideline Review - expert checks guideline conformance
(8 methods)

UE Method UI E�ort
Use quantitative screen measures for analysis (AIDE, WIMP
[Parush et al. 1998])
Analyze terminology and consistency of UI elements (Sherlock) WIMP
Analyze the structure of Web pages (Rating Game, HyperAT, Web
Gentler)
Use guidelines for analysis (WebSAT) Web
Analyze the scanning path of a Web page (Design Advisor) Web

Table 2.8: Synopsis of automated analysis support for inspection methods.

Inspection Methods: Automated Analysis { WIMP UIs

Several quantitative measures have been proposed for evaluating interfaces. Tullis [1983]
derived size measures (Overall Density, Local Density, Number of Groups, Size of Groups, Number
of Items, and Layout Complexity). [Streveler and Wasserman 1984] proposed \boxing," \hot-
spot," and \alignment" analysis techniques. These early techniques were designed for alphanumeric
displays, while more recent techniques evaluate WIMP interfaces. Vanderdonckt and Gillo [1994]
proposed �ve visual techniques (Physical Composition, Association and Dissociation, Ordering, and
Photographic Techniques), which identi�ed more visual design properties than traditional balance,
symmetry and alignment measures. Rauterberg [1996a] proposed and validated four measures
(Functional Feedback, Interactive Directness, Application Flexibility, and Dialog Flexibility) to
evaluate WIMP UIs. Quantitative measures have been incorporated into automated layout tools
[Bodart et al. 1994; Kim and Foley 1993] as well as several automated analysis tools [Mahajan and
Shneiderman 1997; Parush et al. 1998; Sears 1995], discussed immediately below.

Parush et al. [1998] developed and validated a tool for computing the complexity of dialog
boxes implemented with Microsoft Visual Basic. The tool considers changes in the size of screen
elements, the alignment and grouping of elements, as well as the utilization of screen space in its
calculations. Usability studies demonstrated that tool results can be used to decrease screen search
time and ultimately to improve screen layout. AIDE (semi-Automated Interface Designer and
Evaluator) [Sears 1995] is a more advanced tool that helps designers assess and compare di�erent
design options using quantitative task-sensitive and task-independent metrics, including eÆciency
(i.e., distance of cursor movement), vertical and horizontal alignment of elements, horizontal and
vertical balance, and designer-speci�ed constraints (e.g., position of elements). AIDE also employs
an optimization algorithm to automatically generate initial UI layouts. Studies with AIDE showed
it to provide valuable support for analyzing the eÆciency of a UI and incorporating task information
into designs.

Sherlock [Mahajan and Shneiderman 1997] is another automated analysis tool for Windows
interfaces. Rather than assessing ergonomic factors, it focuses on task-independent consistency
checking (e.g., same widget placement and labels) within the UI or across multiple UIs; user studies
have shown a 10{25% speedup for consistent interfaces [Mahajan and Shneiderman 1997]. Sherlock
evaluates visual properties of dialog boxes, terminology (e.g., identify confusing terms and check
spelling), as well as button sizes and labels. Sherlock evaluates any Windows UI that has been
translated into a special canonical format �le; this �le contains GUI object descriptions. Currently,



34

there are translators for Microsoft Visual Basic and Microsoft Visual C++ resource �les.

Inspection Methods: Automated Analysis { Web UIs

The Rating Game [Stein 1997] is an automated analysis tool that attempts to measure
the quality of a set of Web pages using a set of easily measurable features. These include: an
information feature (word to link ratio), a graphics feature (number of graphics on a page), a
gadgets feature (number of applets, controls, and scripts on a page), and so on. The tool reports
these raw measures without providing guidance for improving a Web page.

Two authoring tools from Middlesex University, HyperAT [Theng and Marsden 1998] and
Gentler [Thimbleby 1997], perform a similar structural analysis at the site level. The goal of the
Hypertext Authoring Tool (HyperAT) is to support the creation of well-structured hyperdocuments.
It provides a structural analysis which focuses on verifying that the breadths and depths within
a page and at the site level fall within thresholds (e.g., depth less than three levels). (HyperAT
also supports inferential analysis of server log �les similarly to other log �le analysis techniques;
see Section 2.5.3.) Gentler [Thimbleby 1997] provides similar structural analysis but focuses on
maintenance of existing sites rather than design of new ones.

The Web Static Analyzer Tool (SAT) [Scholtz and Laskowski 1998], part of the NIST
WebMetrics suite of tools, assesses static HTML according to a number of usability guidelines,
such as whether all graphics contain ALT tags, the average number of words in link text, and the
existence of at least one outgoing link on a page. Currently, WebSAT only processes individual
pages and does not suggest improvements [Chak 2000]. Future plans for this tool include adding
the ability to inspect the entire site more holistically to identify potential problems in interactions
between pages.

Unlike other analysis approaches, the Design Advisor [Faraday 2000] enables visual anal-
ysis of Web pages. The tool uses empirical results from eye tracking studies designed to assess the
attentional e�ects of various elements, such as animation, images, and highlighting, in multimedia
presentations [Faraday and Sutcli�e 1998]; these studies found motion, size, images, color, text
style, and position to be scanned in this order. The Design Advisor determines and superimposes
a scanning path on a Web page where page elements are numbered to indicate the order in which
elements will be scanned. It currently does not provide suggestions for improving scanning paths.

Inspection Methods: Automated Analysis { Discussion

Table 2.8 summarizes automated analysis methods discussed in this section. All of the
WIMP approaches are highly e�ective at checking for guidelines that can be operationalized. These
include computing quantitative measures (e.g., the size of screen elements, screen space usage, and
eÆciency) and checking consistency (e.g., same widget size and placement across screens). All of
the tools have also been empirically validated. However, the tools cannot assess UI aspects that
cannot be operationalized, such as whether the labels used on elements will be understood by users.
For example, [Farenc et al. 1999] show that only 78% of a set of established ergonomic guidelines
could be operationalized in the best case scenario and only 44% in the worst case. All methods
also su�er from limited applicability (interfaces developed with Microsoft Visual Basic or Microsoft
Visual C). The tools appear to be straight forward to learn and use, provided the UI is developed
in the appropriate environment.

The Rating Game, HyperAT, and Gentler compute and report a number of statistics about
a page (e.g., number of links, graphics, and words). However, the e�ectiveness of these structural
analyses is questionable, since the thresholds have not been empirically validated. Although there



35

Method Class: Inspection
Automation Type: Critique

Method Type: Guideline Review - expert checks guideline conformance
(11 methods)

UE Method UI E�ort
Use guidelines for critiquing (KRI/AG, IDA, CHIMES, Ergoval) WIMP
Use guidelines for critiquing and modifying a UI (SYNOP) WIMP M
Check HTML syntax (Weblint, Dr. Watson) Web
Use guidelines for critiquing (Lift Online, Lift Onsite, Web
Bobby, WebEval)

Table 2.9: Synopsis of automated critique support for inspection methods.

have been some investigations into breadth and depth tradeo�s for the Web [Larson and Czer-
winski 1998; Zaphiris and Mtei 1997], general thresholds still remain to be established. Although
WebSAT helps designers adhere to good coding practices, these practices have not been shown
to improve usability. There may be some indirect support for these methods through research
aimed at identifying aspects that a�ect Web site credibility [Fogg et al. 2001; Kim and Fogg 1999;
Fogg et al. 2000], since credibility a�ects usability and vice versa. A survey of over 1,400 Web
users as well as an empirical study indicated that typographical errors, ads, broken links, and other
aspects impact credibility; some of these aspects can be detected by automated UE tools, such as
WebSAT. All of these approaches are easy to use, learn, and apply to all Web UIs.

The visual analysis supported by the Design Advisor could help designers improve Web
page scanning. It requires a special Web browser for use, but is easy to use, learn, and apply
to basic Web pages (i.e., pages that don't use scripts, applets, Macromedia Flash, or other non-
HTML technology). Heuristics employed by this tool were developed based on empirical results
from eye tracking studies of multimedia presentations, but have not been empirically validated for
Web pages.

2.6.4 Inspection Methods: Automated Critique

Critique systems give designers clear directions for conforming to violated guidelines and
consequently improving usability. As mentioned above, following guidelines is diÆcult, especially
when there is a large number of guidelines to consider. Automated critique approaches, especially
ones that modify a UI [Balbo 1995], provide the highest level of support for adhering to guidelines.

Table 2.9 provides a synopsis of automated critique methods discussed in the remainder
of this section. All but one method, SYNOP, require minimal e�ort to employ; this is denoted
with a blank entry in the e�ort column. Support available for WIMP and Web UIs is discussed
separately.

Inspection Methods: Automated Critique { WIMP UIs

The KRI/AG tool (Knowledge-based Review of user Interface) [Lowgren and Nordqvist
1992] is an automated critique system that checks the guideline conformance of X Window inter-
face designs created using the TeleUSE UIMS [Lee 1997]. KRI/AG contains a knowledge base of
guidelines and style guides, including the Smith and Mosier guidelines [Smith and Mosier 1986]
and the Motif style guides [Open Software Foundation 1991]. It uses this information to automat-
ically critique a UI design and generate comments about possible aws in the design. IDA (user



36

Interface Design Assistance) [Reiterer 1994] also embeds rule-based (i.e., expert system) guideline
checks within a UIMS. SYNOP [Balbo 1995] is a similar automated critique system that performs
a rule-based critique of a control system application. SYNOP also modi�es the UI model based
on its evaluation. CHIMES (Computer-Human Interaction ModElS) [Jiang et al. 1993] assesses
the degree to which NASA's space-related critical and high risk interfaces meet human factors
standards.

Unlike KRI/AG, IDA, SYNOP, and CHIMES, Ergoval [Farenc and Palanque 1999] is
widely applicable to WIMP UIs on Windows platforms. It organizes guidelines into an object-
based framework (i.e., guidelines that are relevant to each graphical object) to bridge the gap
between the developer's view of an interface and how guidelines are traditionally presented (i.e.,
checklists). This approach is being incorporated into a petri net environment [Palanque et al. 1999]
to enable guideline checks throughout the development process.

Inspection Methods: Automated Critique { Web UIs

Several automated critique tools use guidelines for Web site usability checks. The World
Wide Web Consortium's HTML Validation Service [World Wide Web Consortium 2000] checks that
HTML code conforms to standards. Weblint [Bowers 1996] and Dr. Watson [Addy & Associates
2000] also check HTML syntax and in addition verify links. Dr. Watson also computes download
speed and spell checks text.

UsableNet's LIFT Online and LIFT Onsite [Usable Net 2000] perform usability checks
similarly to WebSAT (discussed in Section 2.6.3) as well as checking for use of standard and
portable link, text, and background colors, the existence of stretched images, and other guideline
violations. LIFT Online suggests improvements, while LIFT Onsite guides users through making
suggested improvements. According to [Chak 2000], these two tools provide valuable guidance for
improving Web sites. Bobby [Clark and Dardailler 1999; Cooper 1999] is another HTML analysis
tool that checks Web pages for their accessibility [Web Accessibility Initiative 1999] to people with
disabilities.

Conforming to the guidelines embedded in these tools can potentially eliminate usability
problems that arise due to poor HTML syntax (e.g., missing page elements) or guideline violations.
As previously discussed, research on Web site credibility [Fogg et al. 2001; Kim and Fogg 1999;
Fogg et al. 2000] possibly suggests that some of the aspects assessed by these tools, such as broken
links and other errors, may also a�ect usability due to the relationship between usability and
credibility. However, [Ratner et al. 1996] question the validity of HTML usability guidelines, since
most have not been subjected to a rigorous development process as established guidelines for
WIMP interfaces. Analysis of 21 HTML guidelines showed little consistency among them, with
75% of recommendations appearing in only one style guide. Furthermore, only 20% of HTML-
relevant recommendations from established WIMP guidelines existed in the 21 HTML style guides.
WebEval [Scapin et al. 2000] is one automated critique approach being developed to address this
issue. Similarly to Ergoval (discussed above), it provides a framework for applying established
WIMP guidelines to relevant HTML components. Even with WebEval, some problems, such as
whether text will be understood by users, are diÆcult to detect automatically.

Inspection Methods: Automated Critique { Discussion

Table 2.9 summarizes automated critique methods discussed in this section. All of the
WIMP approaches are highly e�ective at suggesting UI improvements for those guidelines that can
be operationalized. These include checking for the existence of labels for text �elds, listing menu



37

options in alphabetical order, and setting default values for input �elds. However, they cannot
assess UI aspects that cannot be operationalized, such as whether the labels used on elements will
be understood by users. As previously discussed, [Farenc et al. 1999] show that only 78% of a set
of established ergonomic guidelines could be operationalized in the best case scenario and only 44%
in the worst case. Another drawback of approaches that are not embedded within a UIMS (e.g.,
SYNOP) is that they require considerable modeling and learning e�ort on the part of the evaluator.
All methods, except Ergoval, also su�er from limited applicability.

As previously discussed, conforming to the guidelines embedded in HTML analysis tools
can potentially eliminate usability problems that arise due to poor HTML syntax (e.g., missing
page elements) or guideline violations. However, [Ratner et al. 1996] question the validity of
HTML usability guidelines, since most have not been subjected to a rigorous development process
as established guidelines for WIMP interfaces and have little consistency among them. Brajnik
[2000] surveyed eleven automated Web site analysis methods, including Bobby and Lift Online.
The author's survey revealed that these tools address only a sparse set of usability features, such as
download time, presence of alternative text for images, and validation of HTML and links. Other
usability aspects, such as consistency and information organization are unaddressed by existing
tools.

All of the Web critique tools are applicable to basic HTML pages and appear to be easy
to use and learn. They also enable ongoing assessment, which can be extremely bene�cial after
making changes.

2.7 Inquiry Methods

Similarly to usability testing approaches, inquiry methods require feedback from users and
are often employed during usability testing. However, the focus is not on studying speci�c tasks or
measuring performance. Rather the goal of these methods is to gather subjective impressions (i.e.,
preferences or opinions) about various aspects of a UI. Evaluators also use inquiry methods, such
as surveys, questionnaires, and interviews, to gather supplementary data after a system is released;
this is useful for improving the interface for future releases. In addition, evaluators use inquiry
methods for needs assessment early in the design process.

Inquiry methods vary based on whether the evaluator interacts with a user or a group
of users or whether users report their experiences using questionnaires or usage logs, possibly in
conjunction with screen snapshots. Automation has been used predominately to capture subjective
impressions during formal or informal interface use.

2.7.1 Inquiry Methods: Non-automated

This section provides a synopsis of non-automated inquiry method types. The method
type and method are the same in all cases. All of the methods require formal or informal interface
use. In addition, all of the methods have been or could be applied to WIMP and Web UIs. Unless
otherwise speci�ed, most discussions are based on [Dix et al. 1998; Hom 1998; Human Factors
Engineering 1999b; Nielsen 1993; Shneiderman 1998].

Contextual Inquiry. Contextual inquiry is a structured �eld interviewing method based on three
core principles: 1. understanding the context in which a product is used is essential for its
successful design; 2. the user is a partner in the design process; and 3. the usability design
process must have a focus. Given these guiding principles, an evaluator attempts to discover



38

users' needs through on-site free-ow interviewing. A contextual inquiry is usually a long-
term study possibly lasting a year or more. It is usually conducted in the early stages of
system development.

Field Observation. Field observation is similar to, but less structured than contextual inquiry.
Furthermore, a �eld observation is typically conducted for a released system. For this method,
evaluators visit the representative users' workplace and observe them working with the system.
This enables the evaluator to understand how users are using the system to accomplish their
tasks as well as the mental model the users have of the system. During this visit, the evaluator
may also interview users about their jobs and other aspects about the way they use the
product. Furthermore, evaluators may collect artifacts. This method is also described as an
ethnographic study.

Focus Groups. A focus group is a meeting of about six to nine users wherein users discuss issues
relating to the system. The evaluator plays the role of the moderator (i.e., asks about pre-
determined issues) and gathers the needed information from the discussion. This is valuable
for improving the usability of future releases.

Interviews. An interview is essentially a discussion session between a single user and an inter-
viewer. During an interview, an evaluator asks a user a series of questions about system
issues to guide the discussion. The evaluator can use either an unstructured or structured
interviewing method. In unstructured interviewing there is no well-de�ned agenda, and the
objective is to obtain information on procedures adopted by the user and the user's expec-
tations of the system. Structured interviewing has a speci�c, pre-determined agenda with
speci�c questions to guide and direct the interview. Unstructured interviewing is more of a
conversation, while structured interviewing is more of an interrogation.

Surveys. During a survey, an evaluator asks a user pre-determined questions and records re-
sponses. However, surveys are not as formal or structured as interviews.

Questionnaires. A questionnaire is a measurement tool designed to assess a user's subjective
satisfaction with an interface. It is a list of questions that are distributed to users for responses.
Responses on a questionnaire are usually quantitative (e.g., ratings on a 5-point scale). One
example questionnaire is the Questionnaire for User Interaction Satisfaction (QUIS) [Harper
and Norman 1993; Human Factors Engineering 1999b]. QUIS contains questions to rate 27
system attributes on a 10-point scale, including overall system satisfaction, screen visibility,
terminology, system information, learning factors, and system capabilities.

Self-reporting Logs. Self-reporting logs is a paper-and-pencil form of logging wherein users write
down their actions, observations, and comments on a system and then send them to the
evaluator. This method is most appropriate in early stages of development.

Screen Snapshots. Screen snapshots are usually captured by a participant in conjunction with
other journaling methods, such as self-reporting logs. Basically, participants take screen
snapshots at various times during execution of pre-determined tasks.

User Feedback. User feedback is a means for users to give comments on the system as necessary
or at their convenience. For some systems, it may be possible to make a feedback button or
command accessible within the interface. It is also possible to allow users to submit feedback
via electronic mail, bulletin boards, or Web sites.



39

Method Class: Inquiry
Automation Type: Capture

Method Type: Questionnaires - user provides answers to speci�c questions
(2 methods)

UE Method UI E�ort
Questionnaire embedded within the UI (UPM) WIMP IF
HTML forms-based questionnaires (e.g., WAMMI, WIMP, Web IF
QUIS, SUMI, or NetRaker)

Table 2.10: Synopsis of automated capture support for inquiry methods.

2.7.2 Inquiry Methods: Automated Capture

Table 2.10 provides a synopsis of capture methods developed to assist users with com-
pleting questionnaires. Software tools enable the evaluator to collect subjective usability data and
possibly make improvements throughout the life of an interface. Questionnaires can be embedded
within a WIMP UI to facilitate the response capture process. Typically dialog boxes prompt users
for subjective input and process responses (e.g., save data to a �le or email data to the evaluator).
For example, UPM (the User Partnering Module) [Abelow 1993] uses event-driven triggers (e.g.,
errors or speci�c command invocations) to ask users speci�c questions about their interface usage.
This approach allows the evaluator to capture user reactions while they are still fresh.

The Web inherently facilitates the capture of questionnaire data using forms. Users are
typically presented with an HTML page for entering data, and a program on the Web server (e.g.,
a CGI script) processes responses. Several validated questionnaires are available in Web format,
including QUIS (Questionnaire for User Interaction Satisfaction) [Harper and Norman 1993] and
SUMI (Software Usability Measurement Inventory) [Porteous et al. 1993] for WIMP interfaces and
WAMMI (Website Analysis and MeasureMent Inventory) [Kirakowski and Claridge 1998] for Web
interfaces. NetRaker's [NetRaker 2000] usability research tools enable evaluators to create custom
HTML questionnaires and usability tests via a template interface and to view a graphical summary
of results even while studies are in progress. NetRaker's tools include the NetRaker Index (a short
usability questionnaire) for continuously gathering feedback from users about a Web site. Chak
[2000] reports that NetRaker's tools are highly e�ective for gathering direct user feedback, but
points out the need to address potential irritations caused by the NetRaker Index's pop-up survey
window.

As previously discussed, automated capture methods represent an important �rst step
toward informing UI improvements. Automation support for inquiry methods makes it possible to
collect data quickly from a larger number of users than is typically possible without automation.
However, these methods su�er from the same limitation of non-automated approaches { they may
not clearly indicate usability problems due to the subjective nature of user responses. Furthermore,
they do not support automated analysis or critique of interfaces. The real value of these techniques
is that they are easy to use and widely applicable.

2.8 Analytical Modeling Methods

Analytical modeling complements traditional evaluation techniques like usability testing.
Given some representation or model of the UI and/or the user, these methods enable the evaluator
to inexpensively predict usability. A wide range of modeling techniques have been developed, and



40

they support di�erent types of analyses. de Haan et al. [1992] classify modeling approaches into
the following four categories:

� Models for task environment analysis: enable the evaluator to assess the mapping
between the user's goals and UI tasks (i.e., how the user accomplishes these goals within the
UI). ETIT (External Internal Task Mapping) [Moran 1983] is one example for evaluating the
functionality, learnability, and consistency of the UI;

� Models to analyze user knowledge: enable the evaluator to use formal grammars to rep-
resent and assess knowledge required for interface use. AL (Action Language) [Reisner 1984]
and TAG (Task-Action Grammar) [Payne and Green 1986] allow the evaluator to compare
alternative designs and predict di�erences in learnability;

� Models of user performance: enable the evaluator to predict user behavior, mainly task
completion time. GOMS analysis (Goals, Operators, Methods, and Selection rules) [John and
Kieras 1996], CTA (Cognitive Task Analysis) [May and Barnard 1994], and (Programmmable
User Models) PUM [Young et al. 1989] { support performance prediction; and

� Models of the user interface: enable the evaluator to represent the UI design at multiple
levels of abstraction (e.g., syntactic and semantic levels) and assess this representation. CLG
(Command Language Grammar) [Moran 1981] and ETAG (Extended Task-Action Grammar)
[Tauber 1990] are two methods for representing and inspecting designs.

Models that focus on user performance, such as GOMS analysis, typically support quan-
titative analysis. The other approaches typically entail qualitative analysis and in some cases, such
as TAG, support quantitative analysis as well. The survey only revealed automation support for
methods that focus on user performance, including GOMS analysis, CTA, and PUM; this is most
likely because performance prediction methods support quantitative analysis, which is easier to
automate.

Automation has been predominately used to analyze task completion (e.g., execution and
learning time) within WIMP UIs. Analytical modeling inherently supports automated analysis.
The survey did not reveal analytical modeling techniques to support automated critique. Most
analytical modeling and simulation approaches are based on the model human processor (MHP)
proposed by Card et al. [1983]. GOMS analysis (Goals, Operators, Methods, and Selection Rules) is
one of the most widely accepted analytical modeling methods based on the MHP [John and Kieras
1996]. Other methods based on the MHP employ simulation and will be discussed in Section 2.9.

2.8.1 Analytical Modeling Methods: Non-automated

This section provides a synopsis of non-automated modeling method types. Method types
and methods are the same in all cases. All of the methods require model development and have
only been employed for WIMP interfaces.

GOMS Analysis. The GOMS family of analytical modeling methods use a task structure con-
sisting of Goals, Operators, Methods and Selection rules. Using this task structure along with
validated time parameters for each operator, the methods enable predictions of task execu-
tion and learning times, typically for error-free expert performance. The four approaches in
this family include the original GOMS method proposed by Card, Moran, and Newell (CMN-
GOMS) [Card et al. 1983], the simpler keystroke-level model (KLM), the natural GOMS
language (NGOMSL), and the critical path method (CPM-GOMS) [John and Kieras 1996].



41

These approaches di�er in the task granularity modeled (e.g., keystrokes versus a high-level
procedure), the support for alternative task completion methods, and the support for single
goals versus multiple simultaneous goals.

Task-Environment Analysis. ETIT (External Internal Task Mapping) [Moran 1983] is an ex-
ample method for studying the relationship between tasks completed in the user's domain
and the mapping of these tasks into UI tasks. Terminology used for speci�c objects (e.g.,
character, word, or sentence) and operators on these objects (e.g., copy, split, or join) are
�rst enumerated for each domain; then, mappings between the domains are determined. Es-
tablishing such a mapping enables the evaluator to make inferences about the functionality,
learnability, and consistency of the UI. In addition, this method can be used for assessing the
degree of knowledge transfer between alternative designs.

Knowledge Analysis. Knowledge analysis methods, such as AL (Action Language) [Reisner
1984] and TAG (Task-Action Grammar) [Payne and Green 1986], provide a formal gram-
mar for representing and assessing knowledge required for converting speci�c user tasks into
UI tasks. Both of these techniques assess usability by counting the number and depth of
rules, but di�er with respect to the formal grammar employed. AL uses a well-known nota-
tion for expressing computer science programming languages { Backus-Naur Form [Backus
et al. 1964]. TAG uses a more sophisticated grammar, which produces more compact repre-
sentations of rules. Measures computed from AL and TAG task representations can be used
to compare alternative designs and to predict di�erences in learnability.

Design Analysis. Design analysis methods, such as CLG (Command Language Grammar) [Moran
1981] and ETAG (Extended Task-Action Grammar) [Tauber 1990], enable the evaluator to
represent the UI design at multiple levels of abstraction (e.g., syntactic and semantic levels)
and assess this representation. These methods are typically used for design speci�cation prior
to UI implementation. ETAG is a re�nement of CLG that supports additional levels of anal-
ysis, such as specifying the syntax. ETAG has also been used for modeling user performance
and knowledge.

2.8.2 Analytical Modeling Methods: Automated Analysis

Table 2.11 provides a synopsis of automated analysis methods discussed in the remainder
of this section. The survey did not reveal analytical modeling methods for evaluating Web UIs.

Analytical Modeling Methods: Automated Analysis { WIMP UIs

Two of the major roadblocks to using GOMS have been the tedious task analysis and
the need to calculate execution and learning times [Baumeister et al. 2000; Byrne et al. 1994;
Hudson et al. 1999; Kieras et al. 1995]. These were originally speci�ed and calculated manually
or with generic tools such as spreadsheets. In some cases, evaluators implemented GOMS models
in computational cognitive architectures, such as Soar or EPIC (discussed in Section 2.9). This
approach actually added complexity and time to the analysis [Baumeister et al. 2000]. QGOMS
(Quick and dirty GOMS) [Beard et al. 1996] and CATHCI (Cognitive Analysis Tool for Human
Computer Interfaces) [Williams 1993] provide support for generating quantitative predictions, but
still require the evaluator to construct GOMS models. Baumeister et al. [2000] studied these
approaches and showed them to be inadequate for GOMS analysis.



42

Method Class: Analytical Modeling
Automation Type: Analysis

Method Type: UIDE Analysis - conduct GOMS analysis within a UIDE
(4 methods)

UE Method UI E�ort
Generate predictions for GOMS task models (QGOMS, CATHCI) WIMP M
Generate GOMS task models and predictions (USAGE, WIMP M
CRITIQUE)

Method Type: Cognitive Task Analysis - predict usability problems (1 method)
UE Method UI E�ort
Cognitive Task Analysis (CTA) WIMP M

Method Type: Programmable User Models - write program that acts like a user
(1 method)

UE Method UI E�ort
Programmable User Models (PUM) WIMP M

Table 2.11: Synopsis of automated analysis support for analytical modeling methods.

USAGE5 (the UIDE System for semi-Automated GOMS Evaluation) [Byrne et al. 1994]
and CRITIQUE (the Convenient, Rapid, Interactive Tool for Integrating Quick Usability Evalua-
tions) [Hudson et al. 1999] provide support for automatically generating a GOMS task model and
quantitative predictions for the model. Both of these tools accomplish this within a user interface
development environment (UIDE). GLEAN (GOMS Language Evaluation and ANalysis) [Kieras
et al. 1995] is another tool that generates quantitative predictions for a given GOMS task model
(discussed in more detail in Section 2.9). These tools reduce the e�ort required to employ GOMS
analysis and generate predictions that are consistent with models produced by experts. The major
hindrance to wide application of these tools is that they operate on limited platforms (e.g., Sun
machines), model low-level goals (e.g., at the keystroke level for CRITIQUE), do not support mul-
tiple task completion methods (even though GOMS was designed to support this), and rely on an
idealized expert user model.

Cognitive Task Analysis (CTA) [May and Barnard 1994] uses a di�erent modeling ap-
proach than GOMS analysis. GOMS analysis requires the evaluator to construct a model for each
task to be analyzed. However, CTA requires the evaluator to input an interface description to
an underlying theoretical model for analysis. The theoretical model, an expert system based on
Interacting Cognitive Subsystems (ICS, discussed in Section 2.9), generates predictions about per-
formance and usability problems similarly to a cognitive walkthrough. The system prompts the
evaluator for interface details from which it generates predictions and a report detailing the theo-
retical basis of predictions. The authors refer to this form of analysis as \supportive evaluation."

The Programmable User Model (PUM) [Young et al. 1989] is an entirely di�erent analyt-
ical modeling technique. In this approach, the designer is required to write a program that acts
like a user using the interface; the designer must specify explicit sequences of operations for each
task. Task sequences are then analyzed by an architecture (similar to the CTA expert system)
that imposes approximations of psychological constraints, such as memory limitations. Constraint
violations can be seen as potential usability problems. The designer can alter the interface design
to resolve violations, and ideally improve the implemented UI as well. Once the designer success-
fully programs the architecture (i.e., creates a design that adheres to the psychological constraints),

5This is not to be confused with the UsAGE log �le capture and analysis tool discussed in Section 2.5.



43

the model can then be used to generate quantitative performance predictions similarly to GOMS
analysis. By making a designer aware of considerations and constraints a�ecting usability from the
user's perspective, this approach provides clear insight into speci�c problems with a UI.

Analytical Modeling Methods: Automated Analysis { Discussion

Table 2.11 summarizes automated analysis methods discussed in this section. Analyti-
cal modeling approaches enable the evaluator to produce relatively inexpensive results to inform
design choices. GOMS analysis has been shown to be applicable to all types of WIMP UIs and
is e�ective at predicting usability problems. However, these predictions are limited to error-free
expert performance in many cases although early accounts of GOMS considered error correction
[Card et al. 1983]. The development of USAGE and CRITIQUE has reduced the learning time
and e�ort required to apply GOMS analysis, but they su�er from limitations previously discussed.
Tools based on GOMS may also require empirical studies to determine operator parameters in cases
where these parameters have not been previously validated and documented.

Although CTA is an ideal solution for iterative design, it does not appear to be a fully-
developed methodology. Two demonstration systems have been developed and e�ectively used
by a group of practitioners as well as by a group of graduate students [May and Barnard 1994].
However, some users experienced diÆculty with entering system descriptions, which can be a time
consuming process. After the initial interface speci�cation, subsequent analysis is easier because
the demonstration systems store interface information. The approach appears to be applicable to
all WIMP UIs. It may be possible to apply a more fully developed approach to Web UIs.

PUM is a programming approach, and thus requires considerable e�ort and learning time
to employ. Although it appears that this technique is applicable to all WIMP UIs, its e�ectiveness
is not discussed in detail in the literature.

Analytical modeling of Web UIs lags far behind e�orts for WIMP interfaces. Many Web
authoring tools, such as Microsoft FrontPage and Macromedia
Dreamweaver, provide limited support for usability evaluation in the design phase (e.g., predict
download time and check HTML syntax). This addresses only a small fraction of usability prob-
lems. While analytical modeling techniques are potentially bene�cial, the survey did not uncover
any approaches that address this gap in Web site evaluation. Approaches like GOMS analysis will
not map as well to the Web domain, because it is diÆcult to predict how a user will accomplish the
goals in a task hierarchy given that there are potentially many di�erent ways to navigate a typical
site. Another problem is GOMS' reliance on an expert user model (at least in the automated
approaches), which does not �t the diverse user community of the Web. Hence, new analytical
modeling approaches, such as a variation of CTA, are required to evaluate the usability of Web
sites.

2.9 Simulation Methods

Simulation complements traditional UE methods and inherently supports automated anal-
ysis. Using models of the user and/or the interface design, computer programs simulate the user
interacting with the interface and report the results of this interaction, in the form of performance
measures and interface operations, for instance. Evaluators can run simulators with di�erent pa-
rameters to study various UI design tradeo�s and thus make more informed decisions about UI
implementation. Simulation is also used to automatically generate synthetic usage data for analy-
sis with log �le analysis techniques [Chi et al. 2000] or event playback in a UI [Kasik and George
1996]. Thus, simulation can also be viewed as supporting automated capture to some degree.



44

Method Class: Simulation
Automation Type: Capture

Method Type: Genetic Algorithm Modeling - mimic novice user interaction
(1 method)

UE Method UI E�ort
Genetic Algorithm Modeling ([Kasik and George 1996]) WIMP

Method Type: Information Scent Modeling - mimic Web site navigation
(1 method)

UE Method UI E�ort
Information Scent Modeling ([Chi et al. 2000]) Web M

Table 2.12: Synopsis of automated capture support for simulation methods.

2.9.1 Simulation Methods: Automated Capture

Table 2.12 provides a synopsis of the two automated capture methods discussed in this
section. Kasik and George [1996] developed an automated technique for generating and capturing
usage data; this data could then be used for driving tools that replay events (such as executing a
log �le) within Motif-based UIs. The goal of this work is to use a small number of input parameters
to inexpensively generate a large number of usage traces (or test scripts) representing novice users.
The evaluator can then use these traces to �nd weak spots, failures, and other usability problems.

To create novice usage traces, the designer initially produces a trace representing an
expert using the UI; a scripting language is available to produce this trace. The designer can then
insert deviation commands at di�erent points within the expert trace. During trace execution, a
genetic algorithm determines user behavior at deviation points, and in e�ect simulates a novice
user learning by experimentation. Genetic algorithms consider past history in generating future
random numbers; this enables the emulation of user learning. Altering key features of the genetic
algorithm enables the designer to simulate other user models. Although currently not supported by
this tool, traditional random number generation can also be employed to explore the outer limits
of a UI, for example, by simulating completely random behavior.

Chi et al. [2000] developed a similar approach for generating and capturing navigation
paths for Web UIs. This approach creates a model of an existing site that embeds information about
the similarity of content among pages, server log data, and linking structure. The evaluator speci�es
starting points in the site and information needs (i.e., target pages) as input to the simulator. The
simulator models a number of agents (i.e., hypothetical users) traversing the links and content of the
site model. At each page, the model considers information \scent" (i.e., common keywords between
an agent's goal and content on linked pages) in making navigation decisions. Navigation decisions
are controlled probabilistically such that most agents traverse higher-scent links (i.e., closest match
to information goal) and some agents traverse lower-scent links. Simulated agents stop when they
reach the target pages or after an arbitrary amount of e�ort (e.g., maximum number of links or
browsing time). The simulator records navigation paths and reports the proportion of agents that
reached target pages.

The authors use these usage paths as input to the Dome Tree visualization methodology,
an inferential log �le analysis approach discussed in Section 2.5. The authors compared actual and
simulated navigation paths for Xerox's corporate site and discovered a close match when scent is
\clearly visible" (meaning links are not embedded in long text passages or obstructed by images).
Since the site model does not consider actual page elements, the simulator cannot account for the
impact of various page aspects, such as the amount of text or reading complexity, on navigation



45

Method Class: Simulation
Automation Type: Analysis

Method Type: Petri Net Modeling - mimic user interaction from usage data
(1 method)

UE Method UI E�ort
Petri Net Modeling (AMME) WIMP IF

Method Type: Information Processor Modeling - mimic user interaction
(9 methods)

UE Method UI E�ort
Employ a computational cognitive architecture for UI analysis WIMP M
(ACT-R, COGNET, EPIC, HOS, Soar, CCT, ICS, GLEAN)
Employ a GOMS-like model to analyze navigation (Site Pro�le) Web M

Table 2.13: Synopsis of automated analysis support for simulation methods.

choices. Hence, this approach may enable only crude approximations of user behavior for sites with
complex pages.

Simulation Methods: Automated Capture { Discussion

Table 2.12 summarizes automated capture methods discussed in this section. Without
these techniques, the evaluator must anticipate all possible usage scenarios or rely on formal or
informal interface use to generate usage traces. Formal and informal use limit UI coverage to a
small number of tasks or to UI features that are employed in regular use. Automated techniques,
such as the genetic algorithm approach, enable the evaluator to produce a larger number of usage
scenarios and widen UI coverage with minimal e�ort.

The system developed by Kasik and George appears to be relatively straightforward to
use, since it interacts directly with a running application and does not require modeling. Interaction
with the running application also ensures that generated usage traces are plausible. Experiments
demonstrated that it is possible to generate a large number of usage traces within an hour. However,
an evaluator must manually analyze the execution of each trace to identify problems. The authors
propose future work to automatically verify that a trace produced the correct result. The evaluator
must also program an expert user trace, which could make the system diÆcult to use and learn.
Currently, this tool is only applicable to Motif-based UIs.

The approach developed by Chi et al. is applicable to all Web UIs. It also appears to be
straightforward to use and learn, since software produces the Web site model automatically. The
evaluator must manually interpret simulation results; however, analysis could be facilitated with
the Dome Tree visualization tool.

2.9.2 Simulation Methods: Automated Analysis

Table 2.13 provides a synopsis of the automated analysis methods discussed in the re-
mainder of this section. Methods for WIMP and Web UIs are considered separately.

Simulation Methods: Automated Analysis { WIMP UIs

AMME [Rauterberg and Aeppili 1995] (see Section 2.5.2) is the only surveyed approach
that constructs a WIMP simulation model (petri net) directly from usage data. Other methods are
based on a model similar to the MHP and require the evaluator to conduct a task analysis (and



46

subsequently validate it with empirical data) to develop a simulator. Hence, AMME is more accu-
rate, exible (i.e., task and user independent), and simulates more detail (e.g., error performance
and preferred task sequences). AMME simulates learning, user decisions, and task completion and
outputs a measure of behavior complexity. Studies have shown that the behavior complexity mea-
sure correlates negatively with learning and interface complexity. Studies have also validated the
accuracy of generated models with usage data [Rauterberg 1995]. AMME should be applicable to
Web interfaces as well, since it constructs models from log �les. Despite its advantages, AMME
still requires formal interface use to generate log �les for simulation studies.

The remaining WIMP simulation methods are based on sophisticated computational cog-
nitive architectures { theoretical models of user behavior { similar to the MHP previously discussed.
Unlike analytical modeling approaches, these methods attempt to approximate user behavior as
accurately as possible. For example, the simulator may track the user's memory contents, interface
state, and the user's hand movements during execution. This enables the simulator to report a de-
tailed trace of the simulation run. Some simulation methods, such as CCT [Kieras and Polson 1985]
(discussed below), can also generate predictions statically (i.e., without being executed) similarly
to analytical modeling methods.

Pew and Mavor [Pew and Mavor 1998] provide a detailed discussion of computational cog-
nitive architectures and an overview of many approaches, including �ve discussed below: ACT-R
(Adaptive Control of Thought) [Anderson 1990; Anderson 1993], COGNET (COGnition as a NEt-
work of Tasks) [Zachary et al. 1996], EPIC (Executive-Process Interactive Control) [Kieras et al.
1997], HOS (Human Operator Simulator) [Glenn et al. 1992], and Soar [Laird and Rosenbloom 1996;
Polk and Rosenbloom 1994]. Here, CCT (Cognitive Complexity Theory) [Kieras and Polson 1985],
ICS (Interacting Cognitive Subsystems) [Barnard 1987; Barnard and Teasdale 1991], and GLEAN
(GOMS Language Evaluation and ANalysis) [Kieras et al. 1995] are also considered. Rather than
describe each method individually, Table 2.14 summarizes the major characteristics of these simu-
lation methods as discussed below.

Modeled Tasks. The surveyed models simulate the following three types of tasks: a user perform-
ing cognitive tasks (e.g., problem-solving and learning:
COGNET, ACT-R, Soar, ICS); a user immersed in a human-machine system (e.g., an aircraft
or tank: HOS); and a user interacting with a typical UI (EPIC, GLEAN, CCT).

Modeled Components. Some simulations focus solely on cognitive processing (ACT-R, COGNET)
while others incorporate perceptual and motor processing as well (EPIC, ICS, HOS, Soar,
GLEAN, CCT).

Component Processing. Task execution is modeled either as serial processing (ACT-R, GLEAN,
CCT), parallel processing (EPIC, ICS, Soar), or semi-parallel processing (serial processing
with rapid attention switching among the modeled components, giving the appearance of
parallel processing: COGNET, HOS).

Model Representation. To represent the underlying user or system, simulation methods use
either task hierarchies (as in a GOMS task structure: HOS, CCT), production rules (CCT,
ACT-R, EPIC, Soar, ICS), or declarative/procedural programs (GLEAN, COGNET). CCT
uses both a task hierarchy and production rules to represent the user and system models,
respectively.

Predictions. The surveyed methods return a number of simulation results, including predictions
of task performance (EPIC, CCT, COGNET, GLEAN, HOS, Soar, ACT-R), memory load



47

Parameter UE Methods

Modeled Tasks
problem-solving and/or learning COGNET, ACT-R, Soar, ICS
human-machine system HOS
UI interaction EPIC, GLEAN, CCT

Modeled Components
cognition ACT-R, COGNET
perception, cognition & motor EPIC, ICS, HOS, Soar, GLEAN, CCT
Component Processing
serial ACT-R, GLEAN, CCT
semi-parallel COGNET, HOS
parallel EPIC, ICS, Soar

Model Representation
task hierarchy HOS, CCT
production rules CCT, ACT-R, EPIC, Soar, ICS
program GLEAN, COGNET

Predictions
task performance EPIC, CCT, COGNET, GLEAN, HOS, Soar,

ACT-R
memory load ICS, CCT
learning ACT-R, Soar, ICS, GLEAN, CCT
behavior ACT-R, COGNET, EPIC

Table 2.14: Characteristics of WIMP simulation methods that are based on a variation of the MHP.

(ICS, CCT), learning (ACT-R, SOAR, ICS, GLEAN, CCT), or behavior predictions such as
action traces (ACT-R, COGNET, EPIC).

These methods vary widely in their ability to illustrate usability problems. Their e�ective-
ness is largely determined by the characteristics discussed (modeled tasks, modeled components,
component processing, model representation, and predictions). Methods that are potentially the
most e�ective at illustrating usability problems model UI interaction and all components (percep-
tion, cognition, and motor) processing in parallel, employ production rules, and report on task
performance, memory load, learning, and simulated user behavior. Such methods would enable the
most exibility and closest approximation of actual user behavior. The use of production rules is
important in this methodology, because it relaxes the requirement for an explicit task hierarchy,
thus allowing for the modeling of more dynamic behavior, such as Web site navigation.

EPIC is the only simulation analysis method that embodies most of these ideal characteris-
tics. It uses production rules and models UI interaction and all components (perception, cognition,
and motor) processing in parallel. It reports task performance and simulated user behavior, but
does not report memory load and learning estimates. Studies with EPIC have demonstrated that
predictions for telephone operator and menu searching tasks closely match observed data. EPIC
and all of the other methods require considerable learning time and e�ort to use. They are also
applicable to a wide range of WIMP UIs.

Simulation Methods: Automated Analysis { Web UIs

The survey revealed only one simulation approach for analysis of Web interfaces { We-
bCriteria's Site Pro�le [Web Criteria 1999]. Unlike the other simulation approaches, it requires an



48

implemented interface for evaluation. Site Pro�le performs analysis in four phases: gather, model,
analyze, and report. During the gather phase, a spider traverses a site (200-600 unique pages) to
collect Web site data. This data is then used to construct a nodes-and-links model of the site.
For the analysis phase, it uses an idealistic Web user model (called Max [Lynch et al. 1999]) to
simulate a user's information seeking behavior; this model is based on prior research with GOMS
analysis. Given a starting point in the site, a path, and a target, Max \follows" the path from the
starting point to the target and logs measurement data. These measurements are used to compute
an accessibility metric, which is then used to generate a report. This approach can be used to
compare Web sites, provided that an appropriate navigation path is supplied for each.

The usefulness of this approach is questionable, since currently it only computes accessi-
bility (navigation time) for the shortest path between speci�ed start and destination pages using a
single user model. Other measurements, such as freshness and page composition, also have ques-
tionable value in improving the Web site. [Brajnik 2000] showed Site Pro�le to support only a
small fraction of the analysis supported by guideline review methods, such as WebSAT and Bobby
(discussed in Section 2.6). [Chak 2000] also cautions that the accessibility measure should be used
as an initial benchmark, not a highly-accurate approximation. Site Pro�le does not entail any
learning time or e�ort on the part of the evaluator, since WebCriteria performs the analysis. The
method is applicable to all Web UIs.

Simulation Methods: Automated Analysis { Discussion

Table 2.13 summarizes automated analysis methods discussed in this section. Unlike most
evaluation approaches, simulation can be used prior to UI implementation in most cases (although
AMME and WebCriteria's Site Pro�le are exceptions to this). Hence, simulation enables alternative
designs to be compared and optimized before implementation.

It is diÆcult to assess the e�ectiveness of simulation methods, although there have been
reports that show EPIC [Kieras et al. 1997] and GLEAN [Baumeister et al. 2000] to be e�ective.
AMME appears to be the most e�ective method, since it is based on actual usage. AMME also
enables ongoing assessment and could be widely used for WIMP and Web interfaces, provided log
�les and system models are available. EPIC is the only method based on the MHP that embodies
the ideal simulator characteristics previously discussed. GLEAN is actually based on EPIC, so it
has similar properties.

In general, simulation methods are more diÆcult to use and learn than other evaluation
methods, because they require constructing or manipulating complex models as well as understand-
ing the theory behind a simulation approach. Approaches based on the MHP are widely applicable
to all WIMP UIs. Approaches that use production rules, such as EPIC, CCT, and Soar, could
possibly be applied to Web UIs where task sequences are not as clearly de�ned as WIMP UIs. Soar
has actually been adapted to model browsing tasks similar to Web browsing [Peck and John 1992].

2.10 Expanding Existing Approaches to Automating Usability Eval-
uation Methods

Automated usability evaluation methods have many potential bene�ts, including reducing
the costs of non-automated methods, aiding in comparisons between alternative designs, and im-
proving consistency in evaluation results. Numerous methods that support automation have been
studied. Based on the methods surveyed, research to further develop log �le analysis, guideline
review, analytical modeling, and simulation techniques could result in several promising automated



49

Method Class: Testing
Automation Type: Analysis

Method Type: Log File Analysis - analyze usage data (20 methods)
UE Method UI E�ort
Use metrics during log �le analysis (DRUM, MIKE WIMP IF
UIMS, AMME)
Use metrics during log �le analysis (Service Metrics, Web IF
[Bacheldor 1999])
Use pattern matching during log �le analysis (MRP) WIMP IF
Use task models during log �le analysis (IBOT, QUIP, WIMP IF
WebQuilt, KALDI, UsAGE)
Use task models and pattern matching during log WIMP IFM

�le analysis (�EMA, USINE, RemUSINE)
Visualization of log �les ([Guzdial et al. 1994]) WIMP IF
Statistical analysis or visualization of log �les (traÆc- Web IF
and time-based analyses, VISVIP, Star�eld and Dome
Tree visualizations)

Table 2.15: Synopsis of automated analysis support for usability testing methods. This is a repetition of
Table 2.6.

techniques as discussed in more detail below. Chapter 3 discusses other promising approaches based
on performance evaluation of computer systems.

2.10.1 Expanding Log File Analysis Approaches

The survey showed log �le analysis to be a viable methodology for automated analysis of
usage data. Table 2.15 summarizes current approaches to log �le analysis. These approaches could
be expanded and improved in the following three ways:

� Generating synthetic usage data for analysis;

� Using log �les for comparing (i.e., benchmarking) comparable UIs; and

� Augmenting task-based pattern-matching approaches with guidelines to support automated
critique.

Generating synthetic usage data for analysis. The main limitation of log �le analysis is
that it still requires formal or informal interface use to employ. One way to expand the use and
bene�ts of this methodology is to leverage a small amount of test data to generate a larger set
of plausible usage data. This is even more important for Web interfaces, since server logs do not
capture a complete record of user interactions. The discussion included two simulation approaches,
one using a genetic algorithm [Kasik and George 1996] and the other using information scent
modeling [Chi et al. 2000] (see Section 2.9.1), that automatically generate plausible usage data.
The genetic algorithm approach determines user behavior during deviation points in an expert
user script, while the information scent model selects navigation paths by considering word overlap
between links and web pages. Both of these approaches generate plausible usage traces without
formal or informal interface use. These techniques also provide valuable insight on how to leverage
real usage data from usability tests or informal use. For example, real data could also serve as
input scripts for genetic algorithms; the evaluator could add deviation points to these.



50

Method Class: Inspection
Automation Type: Analysis

Method Type: Guideline Review - expert checks guideline conformance
(8 methods)

UE Method UI E�ort
Use quantitative screen measures for analysis (AIDE, WIMP
[Parush et al. 1998])
Analyze terminology and consistency of UI elements (Sherlock) WIMP
Analyze the structure of Web pages (Rating Game, HyperAT, Web
Gentler)
Use guidelines for analysis (WebSAT) Web
Analyze the scanning path of a Web page (Design Advisor) Web

Table 2.16: Synopsis of automated analysis support for inspection methods. This is a repetition of Table
2.8.

Using log �les for comparing UIs. Real and simulated usage data could also be used to
evaluate comparable WIMP UIs, such as word processors and image editors. Task sequences could
comprise a usability benchmark (i.e., a program for measuring UI performance); this is similar to
GOMS analysis of comparable task models. After mapping task sequences into speci�c UI opera-
tions in each interface, the benchmark could be executed within each UI to collect measurements.
Representing this benchmark as a log �le of some form would enable the log �le to be executed
within a UI by replay tools, such as: QC/Replay [Centerline 1999] for X Windows; UsAGE [Uehling
and Wolf 1995] for replaying events within a UIMS (discussed in Section 2.5); or WinRunner [Mer-
cury Interactive 2000] for a wide range of applications (e.g., Java and Oracle applications). This is
a promising open area of research for evaluating comparable WIMP UIs. Chapter 3 explores this
concept in more detail.

Augmenting task-based pattern-matching approaches with guidelines to support automated
critique. Given a wider sampling of usage data, using task models and pattern matching during log
�le analysis is a promising research area to pursue. Task-based approaches that follow the USINE
model in particular (i.e., compare a task model expressed in terms of temporal relationships to
usage traces) provide the most support, among the methods surveyed. USINE outputs information
to help the evaluator understand user behavior, preferences, and errors. Although the authors claim
that this approach works well for WIMP UIs, it needs to be adapted to work for Web UIs where
tasks may not be clearly-de�ned. Additionally, since USINE already reports substantial analysis
data, this data could be compared to usability guidelines to support automated critique.

2.10.2 Expanding Guideline Review Approaches

Several guideline review methods for analysis of WIMP interfaces (see Table 2.16) could be
augmented with guidelines to support automated critique. For example, AIDE (discussed in Section
2.6) provides the most support for evaluating UI designs. It computes a number of quantitative
measures and also generates initial interface layouts. Guidelines, such as thresholds for quantitative
measures, could also be incorporated into AIDE analysis to support automated critique.

Although there are several guideline review methods for analyzing and critiquing Web
UIs (see Tables 2.16 and 2.17), existing approaches only cover a small fraction of usability aspects
[Brajnik 2000] and have not been empirically validated. This dissertation presents an approach for
developing Web design guidelines directly from empirical data.



51

Method Class: Inspection
Automation Type: Critique

Method Type: Guideline Review - expert checks guideline conformance
(11 methods)

UE Method UI E�ort
Use guidelines for critiquing (KRI/AG, IDA, CHIMES, Ergoval) WIMP
Use guidelines for critiquing and modifying a UI (SYNOP) WIMP M
Check HTML syntax (Weblint, Dr. Watson) Web
Use guidelines for critiquing (Lift Online, Lift Onsite, Web
Bobby, WebEval)

Table 2.17: Synopsis of automated critique support for inspection methods. This is a repetition of Table
2.9.

2.10.3 Expanding Analytical Modeling Approaches

The survey showed that evaluation within a user interface development environment
(UIDE) is a promising approach for automated analysis via analytical modeling. Table 2.18 sum-
marizes current approaches to analytical modeling. UIDE analysis methods, such as CRITIQUE
and GLEAN, could be augmented with guidelines to support automated critique. Guidelines, such
as thresholds for learning or executing certain types of tasks, could assist the designer with inter-
preting prediction results and improving UI designs. Evaluation within a UIDE should also make
it possible to automatically optimize UI designs based on guidelines.

Although UIDE analysis is promising, it is not widely used in practice. This may be due
to the fact that most tools are research systems and have not been incorporated into popular com-
mercial tools. This is unfortunate since incorporating analytical modeling and possibly simulation
methods within a UIDE should mitigate some barriers to their use, such as being too complex and
time consuming to employ [Bellotti 1988]. Applying such analysis approaches outside of these user
interface development environments is an open research problem.

Cognitive Task Analysis provides some insight for analyzing UIs outside of a UIDE. Fur-
thermore, CTA is a promising approach for automated analysis, provided more e�ort is spent to
fully develop this methodology. This approach is consistent with analytical modeling techniques
employed outside of HCI, such as in the performance evaluation of computer systems [Jain 1991]
(see Chapter 3); this is because with CTA the evaluator provides UI parameters to an underlying
model for analysis versus developing a new model to assess each UI. However, one of the drawbacks
of CTA is the need to describe the interface to the system. Integrating this approach into a UIDE
or UIMS should make this approach more tenable.

As previously discussed, analytical modeling approaches for Web UIs still remain to be
developed. It may not be possible to develop new approaches using a paradigm that requires
explicit task hierarchies. However, a variation of CTA may be appropriate for Web UIs.

2.10.4 Expanding Simulation Approaches

Table 2.19 summarizes current approaches to simulation analysis. The survey showed
that existing simulations based on a human information processor model have widely di�erent
uses (e.g., modeling a user interacting with a UI or solving a problem). Thus, it is diÆcult to
draw concrete conclusions about the e�ectiveness of these approaches. Simulation in general is
a promising research area to pursue for automated analysis, especially for evaluating alternative
designs.



52

Method Class: Analytical Modeling
Automation Type: Analysis

Method Type: UIDE Analysis - conduct GOMS analysis within a UIDE
(4 methods)

UE Method UI E�ort
Generate predictions for GOMS task models (QGOMS, CATHCI) WIMP M
Generate GOMS task models and predictions (USAGE, WIMP M
CRITIQUE)

Method Type: Cognitive Task Analysis - predict usability problems (1 method)
UE Method UI E�ort
Cognitive Task Analysis (CTA) WIMP M

Method Type: Programmable User Models - write program that acts like a user
user (1 method)

UE Method UI E�ort
Programmable User Models (PUM) WIMP M

Table 2.18: Synopsis of automated analysis support for analytical modeling methods. This is a repetition
of Table 2.11.

Method Class: Simulation
Automation Type: Analysis

Method Type: Petri Net Modeling - mimic user interaction from usage data
(1 method)

UE Method UI E�ort
Petri Net Modeling (AMME) WIMP IF

Method Type: Information Processor Modeling - mimic user interaction
(9 methods)

UE Method UI E�ort
Employ a computational cognitive architecture for UI analysis WIMP M
(ACT-R, COGNET, EPIC, HOS, Soar, CCT, ICS, GLEAN)
Employ a GOMS-like model to analyze navigation (Site Pro�le) Web M

Table 2.19: Synopsis of automated analysis support for simulation methods. This is a repetition of Table
2.13.



53

It is possible to use several simulation techniques employed in the performance analysis of
computer systems, in particular trace-driven discrete-event simulation and Monte Carlo simulation
[Jain 1991], to enable designers to perform what-if analyses with UIs (see Chapter 3). Trace-driven
discrete-event simulations use real usage data to model a system as it evolves over time. Analysts
use this approach to simulate many aspects of computer systems, such as the processing subsys-
tem, operating system, and various resource scheduling algorithms. In the user interface �eld, all
surveyed approaches use discrete-event simulation. However, AMME constructs simulation mod-
els directly from logged usage, which is a form of trace-driven discrete-event simulation. Similarly,
other simulators could be altered to process log �les as input instead of explicit task or user models,
potentially producing more realistic and accurate simulations.

Monte Carlo simulations enable an evaluator to model a system probabilistically (i.e.,
sampling from a probability distribution is used to determine what event occurs next). Monte
Carlo simulation could contribute substantially to automated analysis by eliminating the need for
explicit task hierarchies or user models. Most simulations in this domain rely on a single user
model, typically an expert user. Monte Carlo simulation would enable designers to perform what-if
analysis and study design alternatives with many user models. The approach employed by [Chi
et al. 2000] to simulate Web site navigation is a close approximation to Monte Carlo simulation.

2.11 Summary

This chapter provided an overview of usability evaluation and presented a taxonomy for
comparing various methods. It also presented an extensive survey of the use of automation inWIMP
and Web interface evaluation, �nding that automation is used in only 36% of methods surveyed.
Of all of the surveyed methods, only 29% are free from requirements of formal or informal interface
use. All approaches that do not require formal or informal use, with the exception of guideline
review, are based on analytical modeling or simulation.

It is important to keep in mind that automation of usability evaluation does not capture
important qualitative and subjective information (such as user preferences and misconceptions)
that can only be unveiled via usability testing, heuristic evaluation, and other standard inquiry
methods. Nevertheless, simulation and analytical modeling should be useful for helping designers
choose among design alternatives before committing to expensive development costs.

Furthermore, evaluators could use automation in tandem with what are usually non-
automated methods, such as heuristic evaluation and usability testing. For example, an evaluator
doing a heuristic evaluation could observe automatically-generated usage traces executing within a
UI.

Adding automation to usability evaluation has many potential bene�ts, including reduc-
ing the costs of non-automated methods, aiding in comparisons between alternative designs, and
improving consistency in usability evaluation. Research to further develop analytical modeling,
simulation, guideline review, and log �le analysis techniques could result in several promising au-
tomated techniques. The next chapter discusses new approaches that could be developed based on
performance evaluation of computer systems.


