
54

Chapter 3

New Automated Usability Evaluation

Methods

3.1 Introduction

As discussed in Chapter 2, automated usability evaluation (AUE) methods are promising
complements to non-automated methods, such as heuristic evaluation and usability testing. AUE
methods enable an evaluator to identify potential usability problems quickly and inexpensively
compared to non-automated methods and can decrease the overall cost of the evaluation phase
[John and Kieras 1996; Nielsen 1993]. Despite the potential bene�ts of AUE methods, this �eld is
greatly underexplored as shown by the survey in Chapter 2.

Performance evaluation (PE) encompasses established methodologies for measuring the
performance (e.g., speed, throughput, and response time) of a system and for understanding the
cause of measured performance [Jain 1991]. Since computer systems were �rst invented in the
1950's, system designers and analysts have used these methodologies extensively to compare and
improve the performance of hardware and software systems.

The intent of this chapter is to illustrate how PE provides insight about new methods for
automated usability assessment. As such, the chapter systematically compares the two method-
ologies. It provides background for PE, discusses the mapping between the two methodologies,
and introduces two example applications. It then describes how to apply PE to UE for three dif-
ferent classes of evaluation: measurement, simulation, and analytical modeling. In each case, the
discussion illustrates the potential for new automated usability evaluation methods based on this
comparison.

3.2 The Performance Evaluation Process

System designers, analysts, and high performance computing experts have used perfor-
mance evaluation techniques extensively to improve and compare the performance of hardware and
software systems. More recently, human performance and process engineers began to use these
methodologies to understand and improve the performance of humans and work practices. Perfor-
mance in these contexts is a measure of the speed at which a system (e.g., a computer, person, or
process) operates and/or its total e�ectiveness, including throughput, response time, availability,
and reliability. Performance evaluation encompasses methodologies for measuring and for under-
standing the cause of measured performance. Although this methodology has been utilized in many
domains, this chapter focuses on its application in the computer hardware and software domain.

55

1. Specify performance evaluation goals.

2. De�ne system boundary.

3. List system services and outcomes.

4. Select performance metrics.

5. List system and workload parameters.

6. Select factors and their levels.

7. Select evaluation method(s).

8. Select workload.

9. Implement evaluation program.

10. Design experiments.

11. Capture performance data.

12. Analyze and interpret performance data.

13. Critique system to suggest improvements.

14. Iterate the process if necessary.

15. Present results.

Figure 3.1: Activities that may occur during the performance evaluation process.

Performance evaluation is a process that entails many activities, including determining
performance metrics, measuring performance, and analyzing measured performance. Jain [1991]
and Law and Kelton [1991] present similar ten-step systematic approaches to performance evalu-
ation; these steps were adapted for this discussion. Figure 3.1 depicts a �fteen-step process for
conducting a performance evaluation. This process is similar to the one outlined for usability eval-
uation in Chapter 2. Jain [1991] and Law and Kelton [1991] provide detailed discussions of the
steps comprising the performance evaluation process. Hence, they are not discussed in this chapter.

3.3 Overview of Performance Evaluation Methods

PE consists of three broad classes of evaluation methods: measurement, simulation, and
analytical modeling [Jain 1991]. A key feature of all of these approaches is that they enable
an analyst to automatically generate quantitative performance data. Such data can: (i) help
designers explore design alternatives; (ii) help analysts tune system performance; and (iii) help
consumers purchase systems that satisfy their performance requirements. The methods di�er along
several dimensions, including the system stage at which they are applicable, cost, accuracy, time,
and resource requirements. Table 3.1 compares the methods along these dimensions; the table
is modeled after the comparison in [Jain 1991]. The columns re
ect the order of importance of
dimensions.

Measurement has the potential to be the most accurate and credible evaluation method;
however, it is only applicable to an existing system { either the target system or one similar to
it. Simulation is usually more accurate and credible than analytical modeling, since it allows

56

Method Stage Time Resources

Analytical Modeling Any Small Analysts
Simulation Any Medium Computer Languages
Measurement Post-prototype Varies Instruments

Method Accuracy Trade-o� Cost Credibility

Analytical Modeling Low Easy Small Low
Simulation Moderate Moderate Medium Medium
Measurement Varies DiÆcult High High

Table 3.1: Summary of the performance evaluation method classes.

the analyst to incorporate greater system detail. However, simulations require considerably more
time to develop than analytical models. Analytical modeling is usually the least accurate and
consequently the least credible evaluation method because of simpli�cations and assumptions made
to produce the model. However, this method can be valuable for comparing alternatives during
early system design.

Due to the various trade-o�s associated with each evaluation method, it is advisable
to employ two or three methods simultaneously [Jain 1991; Law and Kelton 1991; Sauer and
Chandy 1981]. Typically, an analyst may use simulation and analytical modeling together to verify
and validate the results of each one. It is especially advisable to use analytical modeling and/or
simulation along with measurement, since measurement is highly susceptible to experimental errors.

The remaining sections discuss analytical modeling, simulation, and measurement meth-
ods in more detail.

3.4 Measurement Methods

Capturing real system performance is by far the most credible, yet most expensive perfor-
mance evaluation method. It requires careful selection of performance metrics, a means of running a
workload, and a means of capturing performance measures for the workload. The following sections
discuss these aspects.

3.4.1 Measurement Methods: Selecting Performance Metrics

Performance metrics are a crucial component of this type of assessment and care must be
taken when selecting measures. The goal is to choose a minimal number of metrics that reveal the
maximum amount of relevant performance detail for the system under study. In instances where
multiple users share the system under evaluation (e.g., distributed computing), the analyst must
give consideration to both individual and global metrics. Individual metrics re
ect performance for
each user, while global metrics re
ect the system-wide performance.

Jain [1991] suggests using the list of possible service outcomes (correct response1, incorrect
response, or nonresponse) to guide the selection of performance metrics. Jain distinguishes three
categories of metrics { speed, reliability, and availability { corresponding to the three possible
outcomes. Jain also distinguishes between metrics that measure individual (single user) and global

1Response is a generic term applicable to a wide range of services (e.g., query processing, I/O processing, CPU
processing, etc.).

57

Metric Performance
Outcome Type Example Metric Scope Goal

Correct Response Speed response time IG LB
throughput IG HB
utilization G NB

Incorrect Response Reliability probability of error G LB
time between errors G LB

Nonresponse Availability probability of failure G LB
time between failures G LB

Table 3.2: Metrics associated with possible outcomes. Reliability and availability metrics are typically
captured over a time period (e.g., weeks or months) and are used to assess system performance across users
versus for individual users. The scope of a metric is an individual user (I), global or across users (G), or
both. Performance goals include: lower is better (LB), higher is better (HB), and nominal or middle is better
(NB).

(across users) performance. Table 3.2 summarizes these distinctions along with example metrics.
The scope of each metric { individual or global { is denoted with an I and G, respectively. The
following performance goals are also appropriately associated with each example metric: LB - lower
is better; HB - higher is better; and NB - nominal or middle is better. Below is a discussion of
each of the metric types.

� Speed: a measure of system response time, throughput, or utilization. Response time is the
time between a user's request and the system's response to the request. Throughput is the
rate (in requests per unit of time) at which the system services requests. Utilization is the
fraction of time the system is busy servicing requests.

� Reliability: a measure of the fraction of time the system correctly services users' requests.

� Availability: a measure of the fraction of time the system is available to service user requests.

It is possible that an analyst may need to employ several metrics, individual and global,
for each system service; hence, the number of metrics can grow proportionally (e.g., twice the
number of services to be evaluated). To reduce the number of metrics, Jain suggests selecting a
subset of metrics with low variability, nonredundancy, and completeness as discussed below.

� Low Variability: metrics that are not a ratio of two or more variables.

� Nonredundancy: metrics that do not convey essentially the same information.

� Completeness: metrics that re
ect all of the possible outcomes of a service.

3.4.2 Measurement Methods: Running a Workload

In order to capture performance data, the analyst must �rst load a workload onto the
system via a load driver. Internal drivers, live operators, and remote terminal emulators are the
major types of load drivers and are discussed below.

� Internal Driver: encapsulates mechanisms for loading and running the workload into one
program, as is the case in benchmarks. One problem with this approach is that loading the
workload may a�ect system performance during execution. Nonetheless, benchmarks are a
commonly used internal load driver. They are discussed in more detail below.

58

� Live Operators: real users submit requests to the system. The use of live operators is
extremely costly and hard to control.

� Remote Terminal Emulators: programs that run on separate computers and submit
requests to the system under study. This is one of the most popular and desirable load
drivers used; it is not nearly as costly as using live operators, and it eliminates the interference
problem of internal drivers.

Measurement Methods: Running a Workload { Benchmarking

Benchmarking [Dowd 1993; Jain 1991; Weicker 1990], is one of the most commonly used
measurement techniques for comparing two or more systems. Benchmarking entails using a high-
level, portable program with a realistic workload and adequate problem size to automatically
quantify performance aspects in a reproducible manner. A single such program is referred to as a
benchmark, while multiple programs used jointly are referred to as a benchmark suite. Benchmarks
automatically specify performance metrics and workloads. As such, they simplify the performance
evaluation process to some degree.

Benchmarks di�er along several dimensions, including the application domain, the code
type used, and the type of execution measured as summarized below.

� Application Domain: the benchmark workload and problem size typi�es a speci�c appli-
cation domain (e.g., scienti�c computing, graphics, or databases) and measures performance
aspects germane to this domain. For example, a scienti�c computing benchmark may as-
sess
oating-point computation speed, whereas a database benchmark may assess transaction
completion speed or throughput.

� Code Type: the actual code executed and measured can be a real application (i.e., it
exercises system resources as fully and realistically as possible), a kernel (i.e., the computation
\core" of an application), or a synthetic program designed to model activity of a typical
program or to mimic a real workload.

� Execution Type: the benchmark code can measure several execution types - single stream,
throughput, or interactive. Single stream benchmarking measures the time to execute one
or more benchmarks individually. Throughput benchmarking collects measurements while
multiple programs run concurrently. Use of the term throughput here is distinct from its
use as a performance measure by both single stream and interactive benchmarks. In these
instances multiple programs are not running concurrently; hence, they are not considered
throughput benchmarks. Throughput benchmarks are not as common nowadays as they
were with batch processing systems. Interactive benchmarking measures response time or
throughput in a client/server environment; this execution type requires a second program to
simulate user requests to the server.

Several industry benchmarks provide objective measures of system performance. Stan-
dard benchmarks help buyers to make informed purchases and vendors to prioritize optimization
in their systems. One drawback of these benchmarks is that they lack orthogonality because they
sometimes measure many things at once; this makes it diÆcult to draw concrete conclusions about
performance. Table 3.3 summarizes several commonly used industry benchmarks. There are pub-
lished performance results from a myriad of systems for each of these benchmarks; thus, enabling
comparison across systems.

59

Benchmark Application Domain Code Type Execution Type

Linpack scienti�c computing application single stream
STREAM scienti�c computing synthetic single stream
TPC-C database synthetic interactive
TPC-D database synthetic interactive
SPEC Web 96 Web synthetic interactive

Benchmark What's Measured How It's Measured Metric

Linpack
oating point speed solving linear equation MFlops
STREAM memory bandwidth performing vector operations MB/s
TPC-C server throughput servicing complex transactions tpmC
TPC-D server throughput servicing complex db queries QphD
SPEC Web 96 server throughput servicing HTTP GET requests SPECweb96

Table 3.3: Summary of commonly used industry benchmarks. The What's Measured column re
ects the
performance aspect measured by each benchmark. The How It's Measured column describes the workload
used for measuring this performance aspect, while the Metric column lists the measurement returned by
each benchmark.

3.4.3 Measurement Methods: Capturing Performance Metrics

Analysts use several types of monitors (e.g., hardware counters and software timers) as
well as accounting logs to capture performance data as discussed below.

� Monitors: measure system performance at some level. Hardware monitors, such as coun-
ters, measure low-level performance aspects (e.g., signals on buses and instruction execution
time). Software monitors, such as code instrumented with timing calls, measure high-level
performance aspects (e.g., queue lengths and time to execute a block of code). There are also
�rmware monitors, such as a processor microcode instrumented with timing calls, that mea-
sure performance aspects of network interface cards and other external system components.
Sometimes analysts use multiple hardware, software and/or �rmware monitors simultaneously
as a hybrid monitor.

� Accounting Logs: another form of software monitors that automatically capture perfor-
mance data during program execution. Hence, they do not require system instrumentation as
is the case for monitors. Usually, compiling a program with certain
ags enables accounting.

Tracing and sampling are the primary measurement techniques used in monitors and
accounting logs. Tracing actually produces a time-stamped record of requests as they move through
various stages of the system and/or of event occurrences in the system. Sampling or timing entails
reading a clock at speci�ed times to compute elapsed time between timing events.

3.5 Analytical Modeling Methods

An analytical model consists of mathematical or logical relationships that represent the
analyst's assumptions about how a system works. By solving this model, the analyst can predict
system performance. Analytical modeling approaches range in complexity from simple \back of
the envelope" calculations to formal queuing theory as discussed below.

60

Simplistic Models. \Back of the envelope" and \front of the terminal" [Sauer and Chandy 1981]
calculations are two relatively simple analytical modeling approaches. In the \back of the
envelope" approach the system model is extremely crude such that it facilitates solving the
model via unaided calculation. An analyst may solve slightly more complicated models using
modeling software or a simple mathematical environment, such as Matlab; this is considered
to be \front of the terminal" calculation. Since simplistic models are very abstract represen-
tations of systems, the accuracy of the results produced are highly questionable. Nonetheless,
this approach is very appropriate during the design stage of a system.

Informal Queuing Theory. In this approach an analyst develops a queuing model (i.e., a model
of the times a request spends in various system resource queues) that captures all of the
signi�cant aspects of the system. The analyst then uses this model to get an approximation
(e.g., using numerical methods) to the model solution (i.e., response time). The model is
usually signi�cantly more detailed than the previous approach but less thorough and accurate
than formal queuing theory. The latter case is due to the use of approximate versus exact
system parameters.

Formal Queuing Theory. Formal queuing theory requires more accurate speci�cation of the
following six system parameters: interarrival times of requests; service time at each queue;
number of resources or servers; system capacity (i.e., number of requests that can be serviced);
population size or the maximum number of requests; and the service discipline or policy for
servicing requests, such as �rst come �rst served. This approach can also be used to model
multiple queues in a system as a queuing network. The objective of formal queuing theory
is to solve models for parameters that impact performance to answer questions, such as the
number of servers required to ful�ll the current demand or appropriate sizes of queue bu�ers
to prevent over
ow.

3.6 Simulation Methods

Some models may be too complex to solve using analytical modeling or may have no
analytical solution. In these cases the analyst can create a simulation (i.e., a computer program)
to exercise the model with various inputs to see the resulting a�ects on output measures of perfor-
mance. The analyst accomplishes this with a system model, a program or simulator that behaves
like the model, and detailed input data to the program. Simulation allows the analyst to create ar-
bitrarily detailed models of systems. Consequently, performance analysts consider simulation to be
more credible and accurate than analytical modeling. Nonetheless, simulation requires considerably
more time to develop as well as compute resources to run.

One of the most important aspects of a simulation is the underlying simulation model.
Simulation models vary along three major dimensions as discussed below.

� System Evolution: time-independent models are a representation of a system at a particular
time that is totally independent of time, whereas time-dependent models represent a system
as it evolves over time.

� System Parameters: deterministic models do not contain probabilistic (i.e., generated
based on random numbers) input components, while probabilistic models may contain some
random input components.

� Number of System States: �nite models have a countable number of system states,
whereas in�nite models have an uncountable number of states.

61

These aspects of the model largely govern the type of simulation the analyst uses during
in performance studies. Below is a discussion of several commonly used simulation approaches.

Discrete-Event. In a discrete-event simulation the state variables of the system change instanta-
neously in response to events.

Continuous-Event. In this simulation approach the state variables of a system change continu-
ously with respect to time.

Combined Discrete-Continuous. A simulation can use both the discrete-event and continuous-
event approaches. For example, a discrete system change may occur when a continuous
variable reaches a threshold value.

Monte Carlo. AMonte Carlo simulation uses random numbers to solve stochastic or deterministic
models without time dependence. Analysts use this simulation approach to model probabilis-
tic phenomenon that do not change characteristics with time, such as cancer cell growth.

Any of these simulation approaches, with the exception of Monte Carlo simulation, can
be driven by a time-ordered record of events taken from a real system. This is referred to as
trace-driven simulation. Analysts consider this type of simulation to be the most credible and
accurate.

Several problems associated with all of these simulation approaches include: an inappro-
priate level of system detail, poor random number generators and seeds, no veri�cation or validation
of models, too short simulation runs, and too long simulation runs due to the model complexity.

3.7 Mapping Between Performance and Usability Evaluation

As previously discussed, performance evaluation encompasses established methodologies
for measuring the performance (e.g., speed, throughput, and response time) of a system and for
understanding the cause of measured performance [Jain 1991]. PE consists of three broad classes
of evaluation methods: measurement, analytical modeling, and simulation. A key feature of all of
these approaches is that they enable an analyst to automatically generate quantitative performance
data.

Usability evaluation, on the other hand, encompasses methodologies for measuring usabil-
ity aspects (e.g., e�ectiveness, eÆciency, and satisfaction) of an interface and for identifying speci�c
problems [Nielsen 1993]. As discussed in Chapter 2, UE consists of �ve classes of methods: testing,
inspection, inquiry, analytical modeling, and simulation. Although there has been some work to
automate these approaches, automated UE methods are greatly underexplored. Furthermore, only
29% of existing methods support the same level of automation as PE methods (i.e., automated
capture, analysis, or critique without requiring interface usage).

The remainder of this chapter discusses how PE can be used as a guiding framework for
developing new automated UE methods for both WIMP (Windows, Icons, Menus and Pointers)
and Web interfaces. Similarly to PE, automated UE methods can provide additional support to
evaluators using non-automated methods and for designers exploring design alternatives. These
methods are even more crucial in instances where performance is a major consideration.

Sections 2.3 and 3.2 show the UE and PE processes to be quite similar. Furthermore, there
is a mapping between the methods used within each domain. Table 3.4 summarizes this mapping.
PE measurement, analytical modeling, and simulation methods are used as a framework for this
discussion. The following section presents two applications used throughout the comparison of PE
and UE.

62

PE UE

measurement testing, inspection, inquiry
analytical modeling analytical modeling
simulation simulation

Table 3.4: Mapping between performance evaluation (PE) and usability evaluation (UE) method classes.

Figure 3.2: Address label example in Microsoft Word.

3.7.1 Example Applications and Tasks

Two example applications and representative tasks are referred to throughout this dis-
cussion. The �rst application is a word processor with a task of creating address labels { six to a
page where each label has a rectangular border. Figure 3.2 depicts a sample set of address labels
in Microsoft Word.

It is assumed that the user loaded the application prior to beginning the task and that
the cursor is at the top left margin of a blank document when the user begins the label creation
task. Analysis of this task within Microsoft Word 97 revealed that it requires an expert user 55
steps to complete (see Appendix B). A replicated analysis in Microsoft Word 2000 derived the
same number of steps. Figure 3.3 shows the �rst thirteen steps required to create the �rst label,
along with the corresponding high-level goals; Appendix B contains the high-level goals for all 55
steps in the task sequence. A high-level task structure similar to NGOMSL [John and Kieras 1996]
is used in discussions.

The second application is an information-centric Web site typical of large-scale federal
and state agencies. The task for this application is to navigate from a site entry point to a page
that contains some target information. Figure 3.4 depicts this example with a sample navigation
path. Unlike the label creation example, there is no clear step-by-step procedure for completing
the task. The user could start from any page within the site and follow various paths to the target
information. Hence, it is not possible to specify an explicit task structure as speci�ed for the label
creation example without restricting users to traversing one navigation path through the site. It
is assumed that users are unfamiliar with the site and that locating the information is a one-time

63

 2. Select Envelopes and Labels item
 3. Click Options button
 4. Select label size from list
 5. Click OK button
 6. Click New Document button
 7. Type address in first label
 8. Highlight address

Type address

 9. Click Center button
10. Select Format menu
11. Select Borders and Shading item
12. Select Box setting
13. Click OK button

to label format
Change document

Add border

 1. Select Tools menu

Center address

Figure 3.3: Label creation steps in Microsoft Word 97 and 2000.

Measurement Measurement Type
Workload Monitoring Pro�ling

Benchmark
Granularity �ne coarse
Interference yes yes

Real User
Granularity �ne coarse
Interference no no

Table 3.5: Characteristics of measurement techniques in the performance evaluation domain.

task. Thus, bookmarking is not used to access the information. It also assumed that users enter
the site via a search engine or external link.

The remainder of this chapter demonstrates how to determine the number of errors and
the navigation time for the label creation and site navigation tasks, respectively.

3.8 New UE Measurement Methods

3.8.1 Measurement in Performance Evaluation

Measurement is by far the most credible, yet most expensive PE method [Jain 1991]. It
requires a means of running a workload on a system as well as a means of capturing quantitative
performance data while the workload runs. A performance analyst usually derives the workload
from current or anticipated system use. Capturing quantitative data for the workload enables the
analyst to identify performance bottlenecks, tune system performance, and forecast future perfor-
mance. Table 3.5 summarizes relevant techniques for running workloads and capturing quantitative
performance data. Section 3.4 discusses these approaches in more detail.

64

4

Main

Topic A Topic B Topic C Topic D

Topic B2 Topic B3Topic B1

Topic B1-2 Topic B2-3

Information
Target

Site entry point

1
2

3 5

6

7
8

9

Figure 3.4: Information-centric Web site example.

3.8.2 Measurement in Usability Evaluation

Inspection, testing, and inquiry UE methods are equivalent to PE measurement tech-
niques; most require an interface or prototype to exist to capture measurements of some form
(e.g., number of heuristic violations, task completion time, and subjective rating). Most evalua-
tion methods surveyed in Chapter 2 do not produce quantitative data. However, methods that do
produce quantitative data, such as performance measurement2, use both pro�ling and monitoring
techniques (e.g., high-level and low-level logging) similarly to their PE counterparts, and all of
these methods require a real user (an evaluator or test participant).

Although monitoring with benchmarks is the predominate approach in the PE domain,
it is unused in the UE domain. The closest approximation is replaying previously-captured usage
traces in an interface [Neal and Simons 1983; Zettlemoyer et al. 1999]. Early work with Playback
[Neal and Simons 1983] involved recording actions performed on the keyboard during usability
testing and then sending the recorded commands back to the application. The evaluator could
then observe and analyze the recorded interaction.

More recent work automatically generates usage traces to drive replay tools for Motif-
based UIs [Kasik and George 1996]. The goal of this work is to use a small number of input
parameters to inexpensively generate a large number of test scripts that a tester can then use
to �nd weak spots and application failures during the design phase. The authors implemented a
prototype system that enables a designer to generate an expert user test script and then insert
deviation commands at di�erent points within the script. The system uses a genetic algorithm to
choose user behavior during the deviation points as a means for simulating a novice user learning
by experimentation.

Recent work in agent technology captures widget-level usage traces and automatically

2Performance measurement in this context refers to usability testing methods rather than the performance evalu-
ation method.

65

analyzes user actions during replay [Zettlemoyer et al. 1999]. The IBOT system interacts with
Windows operating systems to capture low-level window events (e.g., keyboard and mouse actions)
and screen bu�er information (i.e., a screen image that can be processed to automatically identify
widgets). The system then combines this information into interface abstractions (e.g., menu select
and menubar search operations) that it can use to infer UI activities at a high-level. The IBOT
system can also perform the same operations as a real user by adding window events to the system
event queue. Similar work has been done in the software engineering �eld for generating test data
values from source code [Jasper et al. 1994].

Guideline review based on quantitative measures is a somewhat distant approximation of
PE benchmarking. Automated analysis tools, such as AIDE (semi-Automated Interface Designer
and Evaluator) [Sears 1995], compute quantitative measures for WIMP UIs and compare them
to validated thresholds. Similar, underdeveloped approaches exist for Web UI assessment (e.g.,
HyperAT [Theng and Marsden 1998], Gentler [Thimbleby 1997], and the Rating Game [Stein
1997]). Thresholds either do not exist or have not been empirically validated.

3.8.3 Applying PE Measurement Methods to UE

As previously stated, benchmarking is widely used in PE to automatically capture quan-
titative performance data on computer systems. Usability benchmarks, especially benchmarks that
can be executed within any UI, is a promising open area of research. Nonetheless, there are three
major challenges to making this a reality in the UE domain. Brief discussions of these challenges
and potential solutions are below; the next section provides more depth on these issues.

The �rst challenge is generating usage traces without conducting usability testing or
reusing traces generated during usability testing. One approach was discussed above [Neal and
Simons 1983]; however, more work needs to be done to automatically generate traces that repre-
sent a wider range of users and tasks to complement real traces. In particular, a genetic algorithm
could simulate usage styles other than a novice user learning-by-experimentation [Kasik and George
1996]. It may also be bene�cial to implement a hybrid trace generation scheme wherein traditional
random number generation is used to explore the outer limits of a UI [Kasik and George 1996].
Data from real users, such as typical errors and their frequencies, could serve as input in both cases
to maximize the realism of generated tasks.

The second challenge is making such traces portable to any UI. In the PE domain this
is accomplished by writing hardware-independent programs in a common programming language,
such as C or Fortran. Analysts then compile these programs with the appropriate compiler
ags and
execute them to capture performance data. There needs to be a similar means of creating portable
usage traces. One way may entail mapping high-level tasks captured in a trace into speci�c interface
operations. The USINE system [Lecerof and Patern�o 1998] provides insight on accomplishing this.
In this system, evaluators create task models expressing temporal relationships between steps and
create a table specifying mappings between log �le entries and the task model. USINE uses this
information to identify task sequences in log �les that violate temporal relationships. Another
approach employed in the IBOT system is to use system-level calls (e.g., mouse and keyboard
event messages); this simpli�es porting to other operating systems. The authors claim that the
IBOT agent can interact with any o�-the-shelf application because it is independent of and external
to the UI.

A proposed solution would combine both the USINE and IBOT approaches. Similarly to
USINE, a task programming tool could prompt evaluators for application steps corresponding to
each task within a generated trace. Ideally, the evaluator could use programming-by-demonstration
[Myers 1992] to record application steps. The task programming tool could translate application

66

Challenge PE UE

Executable Workload software programs usage traces (real & generated)
Portability hardware-independent high-level traces with UI mapping,

software programs benchmark program generation
Quantitative Metrics execution time, number of errors, navigation time

standard metrics

Table 3.6: Summary of the challenges in using PE measurement techniques within the UE domain. The
PE column describes how these challenges are resolved within the PE domain, and the UE column describes
potential ways to resolve these challenges within the UE domain.

sequences into a format, such as system-level calls, that could be subsequently executed within the
application. A benchmark generation tool could then translate the usage trace and mapped appli-
cation sequences into a program for execution similarly to replay tools; each application sequence
could be expressed as a separate function in the program. The Java programming language is
promising for the task programming tool, the benchmark generation tool, as well as the generated
benchmark programs.

The �nal challenge is �nding a good set of quantitative metrics to capture while executing
a trace. Task completion time, the number and types of errors, and other typical UI metrics may
suÆce for this. One of the drawbacks of relying solely on quantitative metrics is that they do not
capture subjective information, such as user preferences given a choice of UIs with comparable
performance and features.

Usability benchmarks are appropriate for evaluating existing UIs or working prototypes
(as opposed to designs). Evaluators can use benchmark results to facilitate identifying potential
usability problems in two ways: (i) To compare the results of an expert user trace to results from
those generated by a trace generation program. This may illustrate potential design improvements
to mitigate performance bottlenecks, decrease the occurrence of errors, and reduce task completion
time. (ii) To compare results to those reported for comparable UIs or alternative designs. This is
useful for competitive analysis and for studying design tradeo�s. Both of these uses are consistent
with benchmark analysis in the PE domain.

Table 3.6 summarizes the challenges with using benchmarking in the UE area. The next
section describes usability benchmarks for the example tasks in more detail.

3.8.4 Example Usability Benchmark

As previously discussed, executable and portable usage traces and a set of quantitative
performance metrics are required to construct a benchmark. To generate high-level usage traces, the
evaluator could specify a high-level representation of the label creation task sequence previously
discussed. Figure 3.5 depicts the nine high-level steps that correspond to the 55-step Microsoft
Word sequence. It is also possible to process a real user trace to create a high-level task sequence.

Figure 3.6 demonstrates a procedure for using the high-level task sequence as input for
constructing and executing a usability benchmark. The evaluator could use the high-level trace as
a task template in which deviation points could be identi�ed similarly to the work done in [Kasik
and George 1996]. The trace generation program would then generate plausible variations of the
task sequence that represent alternative user behaviors during task completion. Figure 3.7 shows
the type of output that the program might generate { an example in which a user mistakenly
enters text before changing the document format, corrects the mistake, and completes the task as
speci�ed by the task template. This approach enables the evaluator to amplify the results taken

67

 2. Enter text
 3. Center text
 4. Add square border to text
 5. Copy text

 1. Change document to label format

 6. Move cursor to next label
 7. Paste text
 8. Add square border to text
 9. Repeat steps 6-8 for remaining 4 labels

Figure 3.5: High-level steps for the label creation task.

Expert user
 traces
Real user
 traces

captured
mappings

prompt
for
mappings

UI
Perform operations

monitored
performance

issue UI
operations

Execution
Time

report results

Demonstrate

Evaluator

UI−specific
operations

high−level tasks

task templates

Prompt evaluator for mappings
Generate benchmark with timing
 calls
Run benchmark

Software Agent

Trace Generation
Generate high−level
usage traces

Figure 3.6: The proposed usability benchmarking procedure.

from a small number of inputs or test subjects to generate behavior equivalent to a larger number
of users and wider UI coverage.

An evaluator or designer could then map all of the high-level tasks in the generated traces
into equivalent UI-speci�c operations as depicted in Figure 3.6. Figure 3.3 shows one such mapping
for creating the �rst label in Microsoft Word. Programming-by-demonstration [Myers 1992] is one
way to facilitate this mapping. An agent program could prompt the designer to demonstrate a task
sequence, such as delete document, and record the steps to facilitate playback. If there is more than
one way to accomplish a task, then the designer could demonstrate multiple methods for a task
and specify a frequency for each, similarly to GOMS [John and Kieras 1996] task representations.

Given the high-level usage traces and UI mappings, the agent could then automatically
generate executable benchmark programs to replay in a UI as depicted in Figure 3.6. To facilitate
error analysis, the agent could also generate a designer benchmark (i.e., a benchmark representing
the correct sequences of operations to complete a task) from the task template and UI mappings.
The agent would then \run" (i.e., send operations to the UI) this designer benchmark once to record

68

 2. Change document to label format
 3. Delete document
 4. Create new document
 5. Change document to label format

 .

 6. Enter text

 1. Enter text

 :

Figure 3.7: Example trace for the label creation task.

 2. Select Main link
 3. Select Topic A link
 4. Click Back button
 5. Select Topic B link

 1. Select Topic D page (Site entry point)

 6. Select Topic B3 link
 7. Select Topic B2 link
 8. Select Topic B2-3 link
 9. Select Target Information link

Figure 3.8: Example trace for the information-seeking task.

system state after each operation. The agent would repeat this procedure for each generated
benchmark, record discrepancies (i.e., di�erences in resulting system state between the designer
benchmark and other benchmarks) as errors, note error locations, and report whether the task
completed successfully3. The agent could also aggregate data over multiple traces to provide more
conclusive error analysis data.

Similar approaches using generated benchmark programs as well as quantitative measures
could be applied to the information-centric Web site example. Generating traces for multiple
navigation paths (and in some cases all possible paths) is the most crucial component for this
example. An algorithm can determine plausible paths based on the navigation structure and
content of the links and pages. Chi et al. [2000] also demonstrates a methodology for generating
plausible navigation paths based on information scent. Genetic algorithm modeling could also be
employed for this. Again, as input the evaluator could use real user traces from Web server logs or
a designer-generated trace. Since navigation operations (e.g., select a link, click the back or forward
button, etc.) are standard in Web browsers, it may be possible to eliminate the mapping operation
that was required for the WIMP example. Hence, the genetic algorithm could generate executable
benchmarks directly as depicted in Figure 3.8. Figure 3.4 shows the corresponding navigation path.

A software agent could simulate navigation, reading, form completion, and other user
behavior within the actual site and report navigation timing data. WebCriteria's Site Pro�le tool
[Web Criteria 1999] uses a similar approach to simulate a user's information-seeking behavior within
a model of an implemented Web site. Site Pro�le uses a standard Web user model to follow an

3Actually \running" both benchmarks in a UI is required, since it may not be possible to ascertain successful task
completion by comparing two task sequences. This can only be accomplished by comparing system state.

69

explicit navigation path through the site and computes an accessibility metric based on predictions
of load time and other performance measures. This approach su�ers from two major limitations: it
uses a single user model; and it requires speci�cation of an explicit navigation path. The proposed
approach with automatically-generated navigation paths would not have these limitations.

Another benchmarking approach for Web sites could entail computing quantitative mea-
sures for Web pages and sites and comparing these measures to validated thresholds or pro�les
of highly-rated sites. As previously discussed, HyperAt, Gentler, and the Rating Game compute
quantitative measures (e.g., number of links, number of words, and breadth and depth of each
page), but validated thresholds have not been established. This dissertation presents an empirical
framework for using quantitative measures to develop pro�les of highly-rated sites. Such pro�les
could also be used to determine validated thresholds. Subsequent chapters discuss the methodology,
pro�les, and threshold derivations in more detail.

3.9 New UE Analytical Modeling Methods

3.9.1 Analytical Modeling in Performance Evaluation

Analytical modeling entails building mathematical or logical relationships to describe how
an existing or proposed system works. The analyst solves a model to predict system performance.
Such predictions are useful for studying design alternatives and for tuning system performance in
the same manner as measurement and simulation. The major di�erence is that analytical modeling
is much cheaper and faster to use albeit not as credible [Jain 1991].

Most analytical models do not adhere to a formal framework, such as queuing theory (see
Section 3.5). These models use parameterized workloads (e.g., request characteristics determined
by probability distributions) and vary in complexity. Some models may be solved with simple
calculations, while others may require the use of software.

3.9.2 Analytical Modeling in Usability Evaluation

The survey in Chapter 2 revealed analytical modeling methods for WIMP UIs, but not
for Web interfaces. GOMS analysis [John and Kieras 1996] is one of the most widely-used analyt-
ical modeling approaches, but there are two major drawbacks of GOMS and other UE analytical
modeling approaches: (i) They employ a single user model, typically an expert user, and (ii) They
require clearly-de�ned tasks. The latter is appropriate for WIMP UIs but does not work well for
information-centric Web sites for reasons previously discussed.

One way to address the �rst problem is to construct tasks representative of non-expert
users with a programming-by-demonstration facility embedded within a UIDE. CRITIQUE [Hudson
et al. 1999] is one such tool; it automatically generates a GOMS structure for a task demonstrated
within a UIDE. Constructing tasks representative of non-expert users requires the evaluator or
designer to anticipate actions of novice and other types of users. However, this information is
usually only discovered during usability testing. Thus, it has a strong non-automated component.

3.9.3 Applying PE Analytical Modeling to UE

Another approach to address both of the problems discussed above can be derived from
the PE analytical modeling framework. Recall from Section 3.3 that PE analytical models predict
system performance based on input parameters. To study di�erent usage scenarios, the analyst
simply changes the input parameters, not the underlying system model. Analytical modeling in the

70

Challenge PE UE

Modeling System parameterized model parameterized model
Multiple Usage vary input parameters usage traces (real & generated),
Scenarios vary input parameters

Table 3.7: Summary of the challenges in using PE analytical modeling techniques in the UE domain. The
PE column describes how these challenges are resolved within the PE domain, and the UE column describes
potential ways to resolve these challenges within the UE domain.

UE domain is usually performed in a manner contrary to the PE counterpart (especially techniques
using GOMS). These approaches require the evaluator to change the underlying system model
rather than the input parameters to study di�erent usage scenarios. Below is a brief discussion of
challenges and potential solutions for addressing this problem; the next section presents a more in
depth solution.

It would be better to construct an abstracted model (i.e., no task details) of a UI that
encapsulates the most important system parameters for predicting performance (e.g., baseline time
to enter information in a dialog box or scan a Web page for novice and expert users). For example,
the designer could construct a basic graphical UI model to predict the number of errors for a high-
level task sequence based on the number of operations in a task, the probability of errors, and
other relevant interface parameters. The designer could then vary the input parameters (e.g., the
number of dialog boxes required by a task and that predictions are to be based on a novice user)
to the model. Each variation of input parameters corresponds to a di�erent design or di�erent user
model. This allows for quick, coarse comparison of alternative designs. Previous work on GOMS
and usability studies could be used to construct this basic UI model. Such models inherently
support ill-de�ned task sequences, since they only require speci�cation of key parameters for tasks.
Although predictions from the model would be crude, such predictions have proven to be invaluable
for making design decisions in PE [Jain 1991].

Besides constructing an abstract model, the designer must determine appropriate system
and input parameters. If an interface exists, either as an implemented system or a model, then the
designer could process generated or real usage traces to abstract the required input parameters.
If an interface or interface model does not exist, then the designer must specify required input
parameters manually.

Cognitive Task Analysis (CTA) [May and Barnard 1994] employs a modeling approach
that is similar to the one proposed. CTA requires the evaluator to input an interface description
to an underlying theoretical model for analysis. The theoretical model, an expert system based
on Interacting Cognitive Subsystems (ICS [Barnard 1987]; discussed in Section 2.9), generates
predictions about performance and usability problems similarly to a cognitive walkthrough. The
CTA system prompts the evaluator for interface details from which it generates predictions and a
report detailing the theoretical basis of predictions. Users have reported experiencing diÆculties
with developing interface descriptions. An approach based on quantitative input parameters should
simplify this process.

Table 3.7 summarizes the challenges for using analytical modeling in the UE domain as it
is used in PE. Analytical modeling is most appropriate for performing quick, coarse evaluations of
various design alternatives.

71

3.9.4 Example Analytical Models

Analytical modeling is appropriate for comparing high-level designs in order to inform
design decisions. Below are example comparison scenarios for the label creation and Web site
navigation tasks.

Label Creation: A designer wants to develop a wizard for walking users through the cumbersome
label creation process. The designer is considering one wizard design that has only three steps
(dialog boxes) but requires the user to specify multiple things (e.g., various label and page
settings) during each step. The designer is also considering a design with �ve steps wherein
the user speci�es fewer things during each step. The designer wants to know which of the
designs would be easier to use.

Web Site Navigation: A designer needs to determine how to divide some content over multiple
pages. The designer is considering dividing the content over �ve large pages as well as over
eight medium pages. The designer wants to know which of the designs would be easier to
navigate, especially for �rst-time visitors.

Equation 3.1 demonstrates a way to predict task completion time; this calculation could be
embedded within a simple UI model and used to generate predictions for the label creation wizard.
This model could contain baseline or average times for completing various interface operations
(task type), such as entering information in a dialog box or performing a generic task. The model
could also incorporate high-level task complexity (complexity adj) and user (user type) models.
For example, if the designer speci�ed prediction based on a novice user, then the model could adjust
the baseline time for tasks (e.g., increase by 15%). Similarly, if the designer speci�ed that tasks were
highly complex, then the model could further adjust the baseline time. To generate predictions,
the designer need only specify the task type (dialog task), the task complexity (medium for the
�rst design and low for the second), and the user type (novice). The designer could vary input
parameters to generate predictions for other scenarios. The UI model could also include an equation
similar to Equation 3.1 for predicting the number of errors.

T = num tasks � (task time[task type] � (3.1)

complexity adj[complexity type] � user adj[user type])

Equation 3.2 demonstrates a similar way to predict navigation time; this calculation could
be embedded within a simple Web navigation model and used to generate predictions for the content
organization approaches. This model is based on the taxonomy of Web tasks discussed in [Byrne
et al. 1999]. Similarly to the previous example, the designer could specify input parameters for the
number of pages (�ve in the �rst design and eight in the second), the complexity of pages (high in
the �rst design and medium in the second), and the user type (novice). The UI model could also
include an equation similar to Equation 3.2 for predicting the number of errors.

T = num pages � ((navigate time � complexity adj[complexity type] � (3.2)

user adj[user type]) + (read time � complexity adj[complexity type] �

user adj[user type]) + (think time � complexity adj[complexity type] �

user adj[user type]))

72

Assuming models of graphical interface usage and Web site navigation existed, designers
could quickly, albeit possibly not very accurately, compare designs and use predictions to inform
decisions. Using empirical data to develop system parameters should improve the accuracy of such
models.

3.10 New UE Simulation Methods

3.10.1 Simulation in Performance Evaluation

In simulation, the evaluator constructs a detailed model of a system to reproduce its be-
havior [Jain 1991]. Typically, a computer program (known as a simulator) exercises this underlying
model with various input parameters and reports resulting system performance. Unlike an analyti-
cal model, which represents a high-level abstraction of system behavior, a simulator mimics system
behavior. Hence, it is possible to use actual execution traces to drive a simulator, which is not
possible with analytical models (see below). Consequently, analysts regard simulation results as
more credible and accurate than analytical modeling results [Jain 1991]. Simulators also allow for
the study of alternative designs before actually implementing the system. This is not possible with
measurement techniques because the system must exist to capture performance data.

The underlying simulation model is one of the major di�erences among the various sim-
ulation approaches. The de�ning characteristics of these models are: the way the system evolves
(time dependent or time independent), how its parameters are generated, and the number of states
it can evolve into. In time-independent evolution, the system does not change characteristics based
on time (i.e., time is not a system parameter); the opposite is true of time-dependent evolution.
System parameters can be �xed (i.e., set to speci�c values) or probabilistic (i.e., randomly generated
from probability distributions). Finally, simulation models can have a �nite or countable number
of system states or an in�nite or uncountable number.

Another distinguishing feature of a simulator is its workload format. The workload may
be in the form of �xed or probabilistic parameters that dictate the occurrence of various system
events or an execution trace captured on a real system. Performance analysts consider trace-driven
simulations to be the most credible and accurate [Jain 1991].

Table 3.8 summarizes characteristics for two frequently-used simulation approaches, discrete-
event and Monte Carlo simulation. Discrete-event simulations model a system as it evolves over
time by changing system state variables instantaneously in response to events. Analysts use this
approach to simulate many aspects of computer systems, such as the processing subsystem, op-
erating system, and various resource scheduling algorithms. Execution traces are often used in
discrete-event simulations, since it is relatively easy to log system events.

Monte Carlo simulations model probabilistic phenomena that do not change character-
istics with time. Analysts use this approach to conduct what-if analysis (i.e., predict resulting
performance due to system resource changes) and to tune system parameters. Due to the ran-
dom nature of Monte Carlo simulations, execution traces are not usually used with this approach.
However, a Monte Carlo simulator may output an execution trace to facilitate analysis of its results.

3.10.2 Simulation in Usability Evaluation

Of the simulation methods surveyed in Chapter 2, all can be characterized as discrete-event
simulations, except for information scent modeling [Chi et al. 2000]; information scent modeling
is a close approximation to Monte Carlo simulation. Typical events modeled in these simulators
include keystrokes, mouse clicks, hand and eye movements, as well as retrieving information from

73

Simulation Simulation Type
Workload Discrete-event Monte Carlo

Parameter
Evolution time-dependent time-independent
Parameters probabilistic probabilistic
of States �nite �nite

Trace
Evolution time-dependent |
Parameters probabilistic |
of States �nite |

Table 3.8: Characteristics of simulation techniques in the performance evaluation domain.

Challenge PE UE

Modeling System software program, simulation UI development environment
environment

Capturing Traces record during measurement usage traces (real & generated)
Using Traces simulator reads & \executes" simulate UI behavior realistically
Multiple Usage vary simulator parameters, usage traces (real & generated)
Scenarios multiple traces

Table 3.9: Summary of the challenges in using PE simulation techniques in the UE domain. The PE column
describes how these challenges are resolved within the PE domain, and the UE column describes potential
ways to resolve these challenges within the UE domain.

memory. All of these simulation methods, except AMME (Automatic Mental Model Evaluator)
[Rauterberg and Aeppili 1995], use �xed or probabilistic system parameters instead of usage traces;
AMME constructs a petri net from usage traces.

3.10.3 Applying PE Simulation to UE

The underexplored simulation areas, discrete-event simulation with usage traces and
Monte Carlo simulation, are promising research areas for automated UE. Several techniques exist
for capturing traces or log �les of interface usage [Neal and Simons 1983; Zettlemoyer et al. 1999].
As previously discussed, tools exist for automatically generating usage traces for WIMP [Kasik and
George 1996] and Web [Chi et al. 2000] interfaces. One approach is to use real traces to drive a
detailed UI simulation in the same manner discussed for measurement; AMME provides an example
of this type of simulation. Such simulators would enable designers to perform what-if analysis and
study alternative designs with realistic usage data.

Monte Carlo simulation could also contribute substantially to automated UE. Most sim-
ulations in the UE domain rely on a single user model, typically an expert user. One solution is
to integrate the technique for automatically generating plausible usage traces into a Monte Carlo
simulator; information scent modeling is a similar example of this type of simulation. Such a sim-
ulator could mimic uncertain behavior characteristic of novice users. This would enable designers
to perform what-if analysis and study design alternatives with realistic usage data. Furthermore,
the simulation run could be recorded for future use with a discrete-event simulator.

Table 3.9 summarizes challenges for using simulation in the UE domain as it is used in
PE. The next section contains an in depth discussion of simulation solutions for the example tasks.

74

3.10.4 Example Simulators

For both of the example tasks, the assumption is that the UI is in the early design stages
and consequently not available for running workloads. Hence, the designer must �rst construct a
model to mimic UI behavior for each operation. The simplest way to accomplish this would be
to expand a UI development environment (UIDE) or UI management system (UIMS) to support
simulation. These environments enable a designer to specify a UI at a high-level (e.g., a model)
and automatically generate an implementation.

Trace-driven discrete-event simulation is appropriate for simulating interface tasks such
as the label creation example. However, all of the discrete-event simulators, except AMME, do not
support executing usage traces. The drawback of AMME is that it requires log �les captured during
interface usage. The requirement of interface usage can be mitigated with a number of techniques
previously discussed for automatically generating usage traces. Such traces could be saved in a
format that a discrete-event simulator can process. In particular, traces need to be augmented
with timing information.

The major di�erence between Monte Carlo and discrete-event simulation, especially sim-
ulation driven by usage traces, is that the task sequence is not pre-determined in a Monte Carlo
simulation. This type of simulation is appropriate for the information-centric Web site example as
described in the following section.

Monte Carlo Simulator for Information-Centric Web Sites

As previously mentioned, Monte Carlo simulation is appropriate for simulating information-
centric Web sites, since this methodology does not require explicit task sequences. The survey
in Chapter 2 revealed two related simulation methods: WebCriteria's Site Pro�le [Web Criteria
1999] and information scent modeling [Chi et al. 2000]. Site Pro�le attempts to mimic a user's
information-seeking behavior within a model of an implemented site. It uses a idealist Web user
model (called Max) that follows an explicit navigation path through the site, estimates page load
and navigation times for the shortest path between the starting and ending points, and measures
content freshness and page composition (amount of text and graphics). Currently, it does not
use other user models, attempt to predict navigation paths, or consider the impact of other page
features, such as the number of colors or fonts, in estimating navigation time. This simulation
approach is more consistent with discrete-event simulation than Monte Carlo simulation, since it
uses explicit navigation paths.

Information scent modeling is more consistent with Monte Carlo simulation and was de-
veloped for generating and capturing navigation paths for subsequent visualization. This approach
creates a model of an existing site that embeds information about the similarity of content among
pages, server log data, and linking structure. The evaluator speci�es starting points in the site and
information needs (target pages) as input to the simulator. The simulation models a number of
agents (hypothetical users) traversing the links and content of the site model. At each page, the
model considers information \scent" (i.e., common keywords between an agent's goal and content
on linked pages) in making navigation decisions. Navigation decisions are controlled probabilisti-
cally such that most agents traverse higher-scent links (i.e., closest match to information goal) and
some agents traverse lower-scent links. Simulated agents stop when they reach the target pages or
after an arbitrary amount of e�ort (e.g., maximum number of links or browsing time).

The simulator records navigation paths and reports the proportion of agents that reached
target pages. The authors comparison of actual and simulated navigation paths for Xerox's corpo-
rate site revealed a close match when scent is \clearly visible" (meaning links are not embedded in

75

Site
Model

Server
Model

User
Model(s)

Information
Seeking
Task(s)

Choose
Navigation
Option

Information Need

Go To Page

Locate on Page

Done?

Stop

Timing

No

Predictions Predictions
Navigation

Monte Carlo Simulator

Results
Quantitative Metrics

navigation time, errors, etc.

Navigation Paths

Models

Information-Seeking
Behavior

Yes

Figure 3.9: Proposed simulation architecture.

long text passages or obstructed by images). Since the site model does not consider actual page
elements, the simulator cannot account for the impact of various page aspects, such as the amount
of text or reading complexity, on navigation choices. Hence, this approach may enable only crude
approximations of user behavior for sites with complex pages.

This section details a Monte Carlo simulation approach to address the limitations of the
Site Pro�le and information scent modeling methodologies; some of this discussion was previously
published as a poster [Ivory 2000]. Figure 3.9 depicts a proposed simulation architecture and
underlying model of information-seeking behavior based on a study by Byrne et al. [1999].

A typical design scenario entails the designer initially creating several designs (i.e., site
models) either by specifying information about each page, including the page title, metadata, page
complexity and link structure, or importing this information from an existing site. The page
complexity measure needs to consider various page features, such as the number of words, links,
colors, fonts, reading complexity, etc.; the benchmarking approach discussed in Chapter 4 as well as
the pro�les developed in Chapter 6 provides insight for automatically determining a page complexity
measure for existing sites, while estimates could be used for non-existent sites. The designer would
also specify details about the server's latency and load (server model) and users' information tasks
(e.g., destination pages and associated topics of interest). Finally, the designer would specify models
of anticipated users with key parameters, such as the reading speed, connection speed, probability
that a user will complete a task, read a page, make an error, etc. The designer could also specify
constraints in the user model, such as an upper bound on navigation time or a small screen size,
using production rules. It is possible to develop user models based on observed user behavior and
reuse these models for simulation studies.

After specifying these models, the designer would then run the simulator for each design.
Each run of the simulator would require the following steps. First, pick a starting page. There
are three di�erent models for how to do this: (1) User speci�ed, (2) Randomly chosen independent
of task (this may be used for assessing reachability), and (3) Chosen based on the task (this is
equivalent to following a link returned by a search engine, a link from an external page, or a link
from a usage trace). Next, repeat the steps below until either (a) the target page is reached; or
(b) a stopping criteria is reached (e.g., maximum navigation time, all paths from starting point

76

Navigation
Option

Information Need

Go To Page

Locate on Page

Done?

Stop

Think Time
Compute Navigation

Choose

Select Option
Load Time

Probabilities

Read & Think Time
Update Conceptual Model

Information-Seeking
Behavior

Yes

No

Figure 3.10: Simulator behavior during a run.

exhausted, or maximum number of links traversed). These steps are depicted in Figure 3.10.
Assuming the starting page is already loaded in the user's browser, the steps for simulating

navigation are:

1. Read the page

� This entails computing a read time based on the following:

(a) page complexity (e.g., amount of text and reading diÆculty)

(b) page visitation (if previously viewed, then less read time)

� Update the system clock after computing the read time.

2. Make a decision

� Think time considers time for

(a) deciding if target is reached (if so, end simulation run)

(b) if not, deciding what to do next (this should be proportional to the number of
options). This entails deciding on a navigation option (e.g., following a link or using
the back button) as follows:

i. survey options (create a list of choices)

ii. compute a probability for selecting each option based on criteria described below;
this procedure is not followed for the discrete-event mode, since the choice is
dictated by the navigation trace.

iii. prune options: if the probability for an option falls below a certain threshold,
then eliminate the option.

iv. choose option: if there is more than one option remaining, then the Monte Carlo
algorithm determines the choice; this choice could be based on history (i.e., a
user model or record of previous choices) or random.

� Update the system clock after computing the think time.

3. Navigate

77

� This entails making the selected page the current page and marking it as visited. It
also entails estimating a link traversal time and updating the system clock. This could
be a �xed page download time or a variable that takes into account network variations,
caching, and characteristics of the page itself.

Step 2b above requires computation of a probability for selecting a next move based on
certain criteria. These include:

1. Metadata match: do a pairwise comparison of metadata between the current and potential
page to compute a score indicating relatedness of content (it should be possible to pre-compute
these for all links and store them in a structure); do a pairwise comparison of metadata
between the target information and next page to compute another match probability; multiply
the probabilities to compute a �nal match probability.

Another possibility is to maintain a composite metadata analysis that's updated at each link.
This composite analysis would take into account metadata on the previous pages traversed
and the target information. This composite metadata could then be used in the pairwise
comparison to compute a �nal match probability.

Information foraging theory [Pirolli 1997; Pirolli et al. 1996] could be used for the metadata
match algorithm. This approach has been used to present users with relevant Web pages in
a site [Pirolli et al. 1996] and for information scent modeling [Chi et al. 2000].

2. Page visitation: if a page has been visited before, adjust selection probability according to
the user model under use.

3. User model: adjust the match probability based on the simulated user. For example, if we
are simulating a user learning by exploration, then the system state would re
ect the user's
current learning. If a page under consideration is consistent with a user's learning, then we
would increase the match probability. Note that this criteria is di�erent from (2), since it
a�ects pages that have not been visited before.

The simulator could report simulated navigation time along with navigation traces to
facilitate analysis and to possibly use with a discrete-event simulator. The designer could use
simulation results for multiple site designs to determine the best information architecture for a site
and to inform design improvements.

3.11 Summary

Using PE as a guiding framework provides much insight into creating new fully-automated
(i.e., does not require interface use) UE methods. The analysis showed that the major challenges to
address include: automatically generating high-level usage traces; mapping these high-level traces
into UI operations; constructing UI models; and simulating UI behavior as realistically as possible.
This chapter described solutions to these challenges for two example tasks.

The proposed simulation and analytical modeling approaches should be useful for helping
designers choose among design alternatives before committing to expensive development costs.
The proposed usability benchmarks should help assess implemented systems globally, across a wide
range of tasks.

The remainder of this dissertation focuses on using PE as a guiding framework for devel-
oping a measurement approach for assessing Web interface quality. Speci�cally, it describes the

78

development of a Web interface benchmark consisting of over 150 page-level and site-level measures,
the development of statistical models of highly-rated interfaces from these quantitative measures,
and the application of these models in assessing Web interface quality and Web design guidelines.

