79

Chapter 4

Automated Analysis Methodology
and Tools

4.1 Introduction

This chapter presents an automated methodology for analyzing Web interfaces that lever-
ages the benefits of both performance evaluation and usability evaluation as discussed in the pre-
vious chapters. In the spirit of measurement techniques in the performance evaluation domain,
benchmarking in particular, the methodology entails computing an extensive set of quantitative
page-level and site-level measures. These measures can be viewed as a benchmark because they
enable objective comparison of Web interfaces. Specifically, these measures are used to derive sta-
tistical models of highly-rated interfaces. As is done with guideline review methods in the usability
evaluation domain, the models are then used in the automated analysis of Web pages and sites.
Unlike other guideline review methods, the guidelines are in essence derived from empirical data.
Hence, it is also possible to use the models to validate or invalidate many guidelines proposed in
the Web design literature.

This chapter and the subsequent two chapters detail the steps followed in this dissertation
towards developing an automated analysis method for Web interfaces. First, this chapter presents
two analysis scenarios as motivation for the methodology. Then, the methodology and tools are
discussed. Chapter 5 summarizes an extensive survey of Web design literature culminating in the
development of 157 page-level and site-level quantitative measures; these measures are computed
by the Metrics Computation Tool discussed in this chapter. These measures are then used to
develop statistical models of highly-rated Web interfaces in Chapter 6; these statistical models are
incorporated into the Analysis Tool discussed in this chapter.

4.2 Analysis Scenarios

4.2.1 Web Interface Evaluation

As background for the methodology presented in this chapter, Figure 4.1 depicts an anal-
ysis scenario: a Web designer seeking to determine the quality of an interface design. If the site has
already been designed and implemented, the designer could use the site as input to an analysis tool.
The analysis tool (or benchmark program) would then sample pages within the site and generate a
number of quantitative measures pertaining to all aspects of the interface. As discussed in Chapter
2, a key component of benchmarking is the ability to determine how well benchmark results com-

80

Web Interfape Design

Good Designs

T e T -Predictions =1 ==
e — «Similarities :
:: — -Differences —
-Suggestions == : .

T -

Figure 4.1: A Web interface evaluation scenario.

pare to other systems or a best case. For this scenario, designs that have been rated favorably by
expert reviewers or users could be used for comparison purposes. Hence, the analysis tool could
compare the input design’s quantitative measures to those for highly-rated designs. Ideally, the
analysis tool goes beyond traditional benchmarking and generates a report containing an interface
quality or usability prediction, links to similar highly-rated designs from the comparison sample,
differences and similarities to the highly-rated designs, and specific suggestions for improvements.
The designer could use these results to choose between alternative designs as well as to inform
design improvements. This analysis process could be iterated as necessary.

Similarly, the designer could use the analysis tool to explore results for other interface
designs, such as favorite sites. This process may help to educate the designer on subtle aspects
of design that may not be apparent from simply inspecting interfaces. The methodology and
tools developed in this dissertation were designed to support many aspects of this Web interface
evaluation scenario. Currently, recommending design improvements and presenting comparable
designs are not supported; future work will focus on these aspects. However, all other aspects of
the scenario are fully supported.

4.2.2 Web Interface Design

One can also imagine that a designer would want to obtain feedback on interface designs
earlier during the design phase as opposed to after implementation. If the tool supported analysis
of designs represented as images or templates, then it would be possible to support this evaluation.
In particular, the tool needs to use image processing during analysis. One could also imagine
supporting the designer even earlier in the design process, such as during the design exploration

81

and refinement phases [Newman and Landay 2000]. Given a large collection of favorably-rated sites,
the designer could explore this collection to stimulate design ideas similarly to practices employed
in the architecture domain [Elliott 2001]. During the design exploration phase, the designer could
look for ways to organize content within health sites as well as navigation schemes, for example.
During the design refinement phase, the designer may look for good page layouts, color palettes,
site maps, navigation bars, form designs, etc.

Ideally, characteristics of Web pages and sites can be represented in a way to facilitate
easily identifying pages and sites that satisfy queries similar to the ones above. Task-based search
techniques that exploit metadata [Elliott 2001; English et al. 2001; Hearst 2000] should be helpful;
Hearst [2000] proposes an approach wherein search interfaces present users with metadata facets
for refining search results. Elliott [2001] presents a similar approach for exploring large online
collections of architecture images; metadata describes the content of images, including location,
architect, style, and kind of building. Metadata for Web interfaces could consist of the quantitative
measures developed in this dissertation (discussed in Chapter 5) as well as others that describe
for instance the size of the site, the type of site, page size, a page’s functional type, elements on
a page (e.g., navigation bars), as well as site ratings. Many of these measures could be computed
automatically by the analysis methodology presented in this chapter. These measures could be
organized into metadata facets. Scapin et al. [2000] presents a useful and relevant framework
for organizing Web guidelines that includes a taxonomy of index keys (e.g., alignment, buttons,
downloading, headings, language, scrolling, navigation structure, and so on); this taxonomy could
be used to organize the measures into metadata facets.

4.3 Methodology

Figure 4.2 depicts the methodology developed to support the interface evaluation scenario.
Earlier work on this methodology was published in [Ivory et al. 2000; Ivory et al. 2001]. The
approach was developed mainly for information-centric Web interfaces (sites whose primary tasks
entail locating specific information) as opposed to functionally-oriented interfaces (sites wherein
users follow explicit task sequences). However, this approach could be used to some degree for
functionally-oriented interfaces, since these interfaces typically present information as well.

The analysis methodology consists of two distinct but related phases: 1. establishing an
interface quality baseline; and 2. analyzing interface quality. Both phases share common activities:
crawling Web sites to download pages and associated elements (Site Crawling); and computing
page-level and site-level quantitative measures (Metrics Computation). During the first phase, the
page-level and site-level measures coupled with expert ratings of sites are analyzed to determine
profiles of highly-rated interfaces. These profiles encapsulate key quantitative measures, thresholds
for these measures, and effective relationships among key measures; thus, representing an interface
quality baseline. During the second phase, the page-level and site-level measures are compared to
the developed profiles and are used to assess interface quality. Sites analyzed in the latter phase are
usually not the same as the sites used to develop profiles. Once profiles are developed, the analysis
phase can be used on an ongoing basis. However, the interface quality baseline phase needs to be
repeated periodically (annually or semi-annually) to ensure that profiles reflect current Web design
practices.

This analysis methodology is consistent with other guideline review methods discussed in
Chapter 2. It is also consistent with benchmarking methods discussed in Chapter 3. Specifically, it
includes a synthetic benchmark that mimics a Web browser loading Web pages and uses an internal
driver (i.e., one program for loading and running the workload). It also includes an automated

Phase I: Establishing an Interface Quality Baseline

Metrics Computation

Compute page- and site—

Profile Development

level measures for Web sites

Web pages

Site Crawling

Download Web
pages and

elements

Starting URL(S)

page-— and site—level measures Determine key characteristigs -
of highly-rated sites Expert ratings

Developed
profiles

Phase Il: Analyzing Interface Quality

Metrics Computation

Compute page- and site—

Interface Analysis

level measures for Web sites

Web pages

Site Crawling

Download Web
pages and
elements

Starting URL(s)

page- and site—level measures Predict interface quality Developed
Determine similarities profiles

and differences

|

Page- and Site—level Measures
Interface Quality Predictions
Similarities/Differences to Profiles

Figure 4.2: Overview of the analysis methodology.

82

83

/ completion

notification

Site
Crawler
Tool

Client

site crawling

page
model

N Site submit run crawler tog
Crawler request
Tool Ul

Web pages
and

ptrics computation elements

submit
HTML Parser
: t
\ Metrics eanes Tool Server 1 and
Computation Web Browser
Tool UI Emulator

word
databases

submit/

—)

Analysis run analysis too
Tool Ul

run :
metrics environment
tool lookup

]
site-level -

measures

X Server

Web Server Analysis

interface
assessmel

developed
profiles
page and
site quality
predictions,
System Console similarities,
& differences

Figure 4.3: Architecture of tools developed to support the analysis methodology. All tools are available as
part of the WebTango Research Project.

analysis component similar to operationalized guidelines. What distinguishes this analysis approach
from other guideline review methods is: 1. the use of quantitative measures; 2. the use of empirical

data to develop guidelines; and 3. the use of profiles (highly-rated interfaces as determined by
expert ratings) as a comparison basis.

4.4 Tools

Figure 4.3 depicts the architecture of tools developed to support the analysis methodology.
The following steps were taken to support the profile development discussed in Chapter 6.

1. Page were downloaded from numerous sites and stored on a Web server (site crawling).

2. Page-level and site-level measures were computed for each downloaded page and site (metrics
computation).

Profiles developed in Chapter 6 are incorporated into the Analysis Tool. The Analysis
Tool invokes the Metrics Computation Tool to generate measures; thus, eliminating the need to
compute measures as a separate step.

This process is available to the public via separate interfaces for the site crawling and
analysis steps; future work will integrate these interfaces into one Ul to support the entire process.
The interface for each tool routes requests to a server daemon (the Tool Server) for processing;
the daemon in turn forks new processes to forward requests to the appropriate backend tool (Site

84

Crawler, Metrics Computation, or Analysis Tool). Both the Site Crawler and Metrics Computation
Tools interact with the HTML Parser and Browser Emulator; this component creates a detailed
representation of a Web page, including the x and y location of each page element, the width and
height of each element, the font used, foreground and background color, and other attributes. The
browser emulator determines many of the details, such as the height and width of text, by querying
the graphics environment via the X Server running on the system console.

Currently, each tool sends an email notification to the client when the request completes;
this notification includes a link to a tarred and gzipped file containing the output of running the
tool. The output of running each tool is used as input to the subsequent step. For example,
pages downloaded by the Site Crawler Tool are then processed by the Metrics Computation Tool
to output page-level and site-level measures. Future work will focus on developing an interactive,
integrated tool.

The components depicted in Figure 4.3 comprise over 33,000 lines of Java, HTML, and
PERL code; they are discussed in detail in the remainder of this section. Appendix C provides
information about running the tools.

4.4.1 HTML Parser and Browser Emulator

The Multivalent Browser (developed as part of the Berkeley Digital Library Project)
[Phelps 1998; Phelps 2001] was used as a starting point for the HTML Parser and Browser Em-
ulator depicted in Figure 4.3'. The Multivalent Browser enables creators of digital documents to
represent their documents at multiple layers of abstraction and to annotate them with behaviors
(e.g., actions), highlighting, and edit marks. The browser provides a means for these documents
to be distributed and viewed by others. A variety of document formats are supported — OCR
output, zip, ASCII, XML, and TeX — in addition to HTML. The browser parses HTML similarly
to the Netscape Navigator 4.75 Browser’s method and supports stylesheets. It does not support
framesets, scripts, and other objects, such as applets.

The Multivalent Browser was revised extensively (~60% of code changed) to generate a
more detailed page model for use by the Site Crawler and Metrics Computation Tools. Most of
the revisions focused on enumerating frames, images, links, and objects that appear in a Web page
and annotating each node in the page’s tree structure with information about how the element is
formatted (e.g., bolded, colored, italicized, etc.), whether it is a link (and if so whether it is an
internal or external link), and downloading page elements to determine their sizes. The new parser
also performs numerous corrections of HTML errors (e.g., out of order tags and tables without
<tr> or <td> tags) while processing Web pages.

The new parser and browser emulator was configured to simulate the Netscape Navigator
4.75 browser with default settings (fonts, link colors, menu bar, address bar, toolbar, and status
line). Currently, most monitors are 800 x 600 pixels [DreamlInk 2000; Nielsen 2000]; thus, the
window size was fixed at 800 x 600 pixels. The current implementation does not support pages
that use framesets, although it does support pages with inline frames; given that Netscape 4.75
does not support inline frames, alternative HTML is typically provided in Web pages by designers
and can be processed. Future work may entail using the Mozilla or Opera parser and browser to
support more accurate page rendering, framesets, and scripts as well as to address performance
problems with the current tool.

The HTML Parser and Browser Emulator comprises approximately 20,000 lines of Java
code. The tool requires an average of 90 seconds to generate a model of a Web page. Performance
should be substantially improved by using a more robust parser and browser.

!The Multivalent Browser code was provided courtesy of Tom Phelps.

85

4.4.2 Site Crawler Tool

A special Web site crawler was developed to address limitations of existing crawlers, such
as Wget [GNU Software Foundation 1999] and HTTrack [Roche 2001]. Existing crawlers rely on
path information to determine the depth of pages, which can be somewhat misleading. They are
also not selective in determining pages to download; they download advertisements and Macromedia
Flash pages, for instance. Finally, they typically attempt to mirror the directory structure of the
remote site or place all images, stylesheets, etc. into one directory; this makes it challenging to
relocate an individual page and its associated elements.

Like existing crawlers, the Site Crawler Tool is multi-threaded. In addition, the tool has
the following key features.

e Pages at multiple levels of the site are accessed, where level zero is the home page, level one
refers to pages one link away from the home page, level two refers to pages one link away
from the level one sites, and so on. The standard settings are: download the home page, up
to 15 level-one pages and 45 level-two pages (3 from each of the level-one pages).

e Links are selected for crawling such that: they are not advertisements, guestbooks, Flash
pages, login pages, chatrooms, documents, or shopping carts; and they are internal to the
site.

e Each downloaded page is stored in a directory with all images, stylesheets, frames, and
objects (e.g., scripts and applets) aggregated and stored in subdirectories. This makes it easy
to relocate pages and associated elements.

The Site Crawler Tool replaces links to images, stylesheets, and other page elements on
the remote server with the corresponding locally-stored files. It also creates input files for the
Metrics Computation Tool.

The Site Crawler Tool comprises approximately 1,500 lines of Java, PERL, and HTML
code; the Web interface for submitting crawling requests is implemented in HTML and PERL, while
the actual crawler is implemented in Java. The tool spends at most twelve minutes downloading
pages on a site before aborting.

4.4.3 Metrics Computation Tool

The Metrics Computation Tool is consistent with other benchmarks discussed in Chapter
3: it is portable to other platforms due to its implementation in Java; it produces quantitative
measures for comparison; and its results are reproducible (i.e., successive runs of the tool on the
same page produce the exact same results). The tool computes 141 page-level and 16 site-level
measures; these measures assess many facets of Web interfaces as discussed in Chapter 5. Numerous
heuristics were developed for computing these measures, such as detecting headings, good color
usage, internal links, and graphical ads. The tool also uses a number of auxiliary databases,
such as the MRC psycholinguistic database [Coltheart 2001] for determining spelling errors and
the number of syllables in words, and other lists of acronyms, abbreviations, medical terms, and
common (stop) words. Currently, the tool only processes English text.

The Metrics Computation Tool comprises approximately 10,500 lines of Java, PERL, and
HTML code. The Web interface for submitting requests for metrics computation is implemented in
HTML and PERL. The page-level measures are implemented in Java, while the between-page and
site-level measures are implemented in Java and PERL. The tool requires on average two minutes
to compute page-level measures per page, 30 seconds to compute between-page measures per page,

86

and one minute to compute site-level measures per site. The performance bottleneck with page-
level measures is the need to traverse the page model at least three times to annotate nodes and
compute measures. During the first phase, the HTML Parser and Browser Emulator constructs
an initial page model. Then, the Metrics Computation Tool traverses the page model to annotate
headings, sentences, links, and to store link text. Page-level measures are computed during the
final pass through the revised page model.

4.4.4 Analysis Tool

The Analysis Tool encompasses several statistical models for assessing Web page and site
quality. Statistical models include decision trees, discriminant classification functions, and K-means
cluster models as discussed in Chapter 6. For cluster and discriminant classification models, the
top ten measures that are similar and different from highly-rated interfaces are reported; acceptable
measure values are also provided. The cluster models also report the distance between measure
values on a page and measure values at the cluster centroid; the distance reflects the total standard
deviation units of difference across all measures. Currently, the Analysis Tool does not provide
the designer with example good sites or pages; future work will focus on developing an algorithm
to provide examples. Future work will also focus on supporting automated critique or providing
explicit suggestions for improvements as well as interactive analysis.

The Analysis Tool comprises about 1,500 lines of PERL and HTML code. Each of the
profiles discussed in Chapter 6 is implemented in PERL, while the interface for submitting analysis
requests is implemented in HTML and PERL. The tool requires one minute on average to compute
page and site quality predictions for a site.

4.5 Summary

This chapter presented an analysis methodology consistent with measurement approaches
used in the performance evaluation domain and guideline review approaches used in the usabil-
ity evaluation domain. Unlike other Web assessment techniques, this approach uses quantitative
measures and empirical data to develop guidelines for comparison purposes.

Although the tools are very robust, they suffer from several limitations. Currently, the
crawling and analysis tools are separate processes and could benefit from being consolidated. An-
other limitation is that metrics computation is extremely compute intensive. Timings on a Sun
Enterprise 450 server revealed that it requires about four minutes on average to process each Web
page to compute page-level measures, between-page measures, and page quality assessments. An
additional minute is needed to compute site-level measures and the quality assessments. It could
take an hour to analyze the quality of a site, including all of the steps from crawling 10 pages
on the site to generating site quality assessments; this depends largely on the complexity of pages
in terms of page sizes and the number of associated elements, including images and stylesheets.
Hence, extensive optimization is needed to enable this process to occur in real time. One possibility
is to reimplement the crawling, metrics computation, and analysis processes using a robust, open
source browser, such as Mozilla or Opera. This will also enable the tools to support framesets and
script processing, since robust browsers support these elements.

The major limitation of this approach is that the quantitative measures do not capture
users’ subjective preferences. For example, one study has shown that perceived download speed is
more important than actual download speed [Scanlon and Schroeder 2000a]. Although it is possible
to measure actual download speed, it may not be possible to assess perceived speed. Nonetheless,

87

the methodology can be viewed as a reverse engineering of design decisions that were presumably
informed by user input.

