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Abstract

An Empirical Foundation for Automated
Web Interface Evaluation

by

Melody Yvette Ivory
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Marti Hearst, Chair

This dissertation explores the development of an automated Web evaluation methodology
and tools. It presents an extensive survey of usability evaluation methods for Web and graphical
interfaces and shows that automated evaluation is greatly underexplored, especially in the Web
domain.

This dissertation presents a new methodology for HCI: a synthesis of usability and perfor-
mance evaluation techniques, which together build an empirical foundation for automated interface
evaluation. The general approach involves: 1. identifying an exhaustive set of quantitative inter-
face measures; 2. computing measures for a large sample of rated interfaces; 3. deriving statistical
models from the measures and ratings; 4. using the models to predict ratings for new interfaces;
and 5. validating model predictions.

This dissertation presents a speci�c instantiation for evaluating information-centric Web
sites. The methodology entails computing 157 highly-accurate, quantitative page-level and site-
level measures. The measures assess many aspects of Web interfaces, including the amount of text
on a page, color usage, and consistency. These measures along with expert ratings from Internet
professionals are used to derive statistical models of highly-rated Web interfaces. The models are
then used in the automated analysis of Web interfaces.

This dissertation presents analysis of quantitative measures for over 5300 Web pages and
330 sites. It describes several statistical models for distinguishing good, average, and poor pages
with 93%{96% accuracy and for distinguishing sites with 68%{88% accuracy.

This dissertation describes two studies conducted to provide insight about what the sta-
tistical models assess and whether they help to improve Web design. The �rst study attempts
to link expert ratings to usability ratings, but the results do not enable strong conclusions to be
drawn. The second study uses the results of applying the statistical models for assessing and re-
�ning example sites and shows that pages and sites modi�ed based on the models are preferred by
participants { professional and non Web designers { over the original ones. Finally, this dissertation
demonstrates use of the statistical models for assessing existing Web design guidelines.

This dissertation represents an important �rst step towards enabling non-
professional designers to iteratively improve the quality of their designs.
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Chapter 1

Introduction

Despite the abundance of design recommendations, recipes, and guidelines for building a
usable Web site [Flanders and Willis 1998; Fleming 1998; Nielsen 1998c; Nielsen 1999b; Nielsen
2000; Rosenfeld and Morville 1998; Sano 1996; Schriver 1997; Shedro� 1999; Shneiderman 1997;
Spool et al. 1999], usability, especially for information-centric Web sites, continues to be a pressing
problem. Given that an estimated 90% of sites provide inadequate usability [Forrester Research
1999], steady growth in new sites [Internet Software Consortium 2001], and a severe shortage of user
interface professionals to ensure usable sites [Nielsen 1999b], tools and methodologies are needed
to accelerate and improve the Web site design process.

One way to ensure the usability of Web sites is via formal testing with users. Nielsen
[1998a] claims that it takes 39 hours to usability test a Web site the �rst time, including planning
the test, de�ning the test tasks, recruiting test participants, conducting a test with �ve participants,
analyzing the results, and writing the report; with experience, this time can be reduced to 16 hours.
Nielsen further claims that a usability test with �ve participants will typically reveal 80% of the site-
level usability problems (e.g., home page, information architecture, navigation and search, linking
strategy, etc.) and 50% of the page-level problems (e.g., understandability of headings, links, and
graphics). The author advocates increasing page-level usability through other methods such as
heuristic evaluation. Contrary to these �ndings, Spool and Schroeder [2001] have shown that �ve
participants only �nd 35% of usability problems when the participants do not complete the same
tasks. Thus, it appears that usability testing may not be a viable method for accelerating and
improving the Web design process.

As a complement to usability testing, many detailed usability guidelines have been devel-
oped for both general user interfaces [Open Software Foundation 1991; Smith and Mosier 1986] and
for Web page design [Comber 1995; Lynch and Horton 1999]. However, designers have historically
experienced diÆculties following design guidelines [Borges et al. 1996; de Souza and Bevan 1990;
Lowgren and Nordqvist 1992; Smith 1986]. Guidelines are often stated at such a high level that it
is unclear how to operationalize them. A typical example can be found in Fleming's book [Fleming
1998], which suggests ten principles of successful navigation design including: be easily learned,
remain consistent, provide feedback, provide clear visual messages, and support users' goals and be-
haviors. Fleming also suggests di�erentiating design among sites intended for community, learning,
information, shopping, identity, and entertainment. Although these goals align well with common
sense, they are not justi�ed with empirical evidence and are mute on actual implementation.

Other Web-based guidelines are more straightforward to implement. For example, Nielsen
[1996] (updated in 1999 [Nielsen 1999a]) claims that the top ten mistakes of Web site design include
using frames, long pages, non-standard link colors, and overly long download times. These are
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apparently based on anecdotal observational evidence. Another essay by Nielsen [1997] provides
guidelines on how to write for the Web, asserting that since users scan Web pages rather than read
them, Web page design should aid scannability by using headlines, using colored text for emphasis,
and using 50% less text (less than what is not stated) since it is more diÆcult to read on the screen
than on paper. Although reasonable, guidelines like these are not usually supported with empirical
evidence.

Furthermore, there is no general agreement about which Web design guidelines are correct.
A survey of 21 Web design guidelines found little consistency among them [Ratner et al. 1996].
This might result from the fact that there is a lack of empirical validation for such guidelines.
Surprisingly, no studies have derived Web design guidelines directly from Web sites that have been
evaluated in some way, such as usability testing or heuristic evaluation. This dissertation presents
the �rst attempt to analyze a large collection of example interfaces to develop statistical models
for evaluating the quality of new interfaces (applied speci�cally to Web sites). Such an automated
evaluation approach can potentially accelerate and improve the Web design process.

As background for the methodology and tools presented in this dissertation, Chapter 2
summarizes an extensive survey of usability evaluation methods for Web and graphical interfaces.
It shows that automated methods are greatly underexplored in the Web domain and that existing
methods require some form of usability testing to employ.

It is natural to question what existing and new automated approaches evaluate and fur-
thermore, do they improve interface design. Chapter 2 discusses evaluation methods under the
assumption that they all support usability evaluation to some degree. According to ISO9241,
usability is the extent to which users can use a computer system to achieve speci�ed goals e�ec-
tively and eÆciently while promoting feelings of satisfaction in a given context of use [International
Standards Organization 1999]. Only methods that solicit user input, such as usability testing and
surveys, enable the assessment of whether a site is usable according to this de�nition; thus, other
methods (non-automated and automated) may not actually evaluate usability. However, what
these methods may evaluate is conformance to usability principles, predicted usability, and possi-
bly other aspects related to the usability of the interface; all of these aspects are important and
can potentially increase the likelihood that an interface will be usable.

As discussed above, usability testing may require considerable time, e�ort, and money
and may not reveal all of the problems with a site. Chapter 3 proposes new methods of automated
usability evaluation based on measurement, analytical modeling, and simulation methods used
in the performance evaluation domain, in particular for evaluating the performance of computer
systems. The outcome of these methods is typically quantitative data that can be used to objectively
compare systems.

The automated evaluation methodology developed in this dissertation is a synthesis of
both performance evaluation and usability evaluation. In particular, the methodology consists of
computing an extensive set of quantitative page-level and site-level measures for sites that have
been rated by Internet professionals. These measures in conjunction with the expert ratings are
used to derive statistical models of highly-rated Web interfaces. As is done with guideline review
methods in the usability evaluation domain, the models are then used in the automated analysis of
Web pages and sites. However, unlike other guideline review methods, the guidelines in this case
are in essence derived from empirical data.

Chapter 4 summarizes the methodology and tools. Chapter 5 describes the page-level and
site-level quantitative measures developed as the result of an extensive survey of the Web design
literature, including texts written by experts and usability studies. The survey revealed a set of
usability aspects, and Chapter 5 describes a total of 141 page-level and 16 site-level measures for
assessing many of these aspects, such as the amount of text on a page, the number of colors used,
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the download speed, and the consistency of pages in the site.
Chapter 6 describes the analysis of data from over 5300 pages and 330 sites to develop

several statistical models for evaluating Web page and site quality. The models distinguish pages
and sites that are rated as good, average, and poor by experts and make it possible to take into
consideration the context (e.g., the page's functional style or the site's topical category) in which
pages and sites are designed. These models include one to assess whether a page is a good home
page and one to assess whether a site is a good health information site. The accuracy of page-level
models range from 93%{96%, while the accuracy of site-level models range from 68%{88%; the
site-level accuracy is considerably less, possibly due to inadequate data.

The methodology developed in this dissertation di�ers from other automated evaluation
methods for Web interfaces in a major way { it is based on empirical data. In essence, the statistical
models can be viewed as a reverse engineering of design decisions that went into producing highly-
rated interfaces; presumably, these design decisions were informed by user input (e.g., usability
testing or surveys). Nonetheless, two studies were conducted to provide insight about the questions
posed above (what is evaluated and are designs improved). Chapter 7 describes a study that
focused on linking expert ratings to usability ratings. Although the results suggest some relationship
between expert and end user ratings, strong conclusions could not be drawn from the study due to
problems with the study design.

Chapter 8 demonstrates use of the statistical models for assessing and improving an exam-
ple site and shows that the model output does inform design improvements. It also provides more
insight into what the pro�les actually represent and the type of design changes informed by them.
Chapter 9 presents �ndings from a study of this site and four others similarly modi�ed based on
model output; site modi�cations were made by the author and three students { two undergraduates
and one graduate. The study focused on determining whether the statistical models help to im-
prove Web designs. Thirteen participants (four professional Web designers, three non-professional
designers who had built Web sites, and six participants who had no experience building Web sites)
completed two types of tasks during this study: 1. explore alternative versions of Web pages and
select the ones exhibiting the highest quality; and 2. explore pages from sites and rate the quality
of the site. The results show that participants preferred pages modi�ed based on the Web interface
pro�les over the original versions, and participants rated modi�ed sites (including the example site)
higher than the original sites; the di�erences were signi�cant in both cases.

Chapter 10 demonstrates use of the statistical models for exploring existing Web design
guidelines. The chapter examines contradictory or vague guidelines for nine aspects of Web inter-
faces, including the amount of text, font styles and sizes, colors, and consistency. The statistical
models reveal quantitative thresholds that validate and in some cases invalidate advice in the lit-
erature. This examination shows that the methodology makes it possible to derive Web design
guidelines directly from empirical data.
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Chapter 2

Usability Evaluation of User

Interfaces

2.1 Introduction

Usability is the extent to which users can use a computer system to achieve speci�ed
goals e�ectively and eÆciently while promoting feelings of satisfaction in a given context of use.1

Usability evaluation (UE) consists of methodologies for measuring the usability aspects of a system's
user interface (UI) and identifying speci�c problems [Dix et al. 1998; Nielsen 1993]. Usability
evaluation is an important part of the overall user interface design process, which ideally consists of
iterative cycles of designing, prototyping, and evaluating [Dix et al. 1998; Nielsen 1993]. Usability
evaluation is itself a process that entails many activities depending on the method employed.
Common activities include:

� Capture - collecting usability data, such as task completion time, errors, guideline violations,
and subjective ratings;

� Analysis - interpreting usability data to identify problems in the interface; and

� Critique - suggesting solutions or improvements to mitigate problems.

A wide range of usability evaluation techniques have been proposed, and a subset of these
are currently in common use. Some evaluation techniques, such as formal usability testing, can only
be applied after the interface design or prototype has been implemented. Others, such as heuristic
evaluation, can be applied in the early stages of design. Each technique has its own requirements,
and generally di�erent techniques uncover di�erent usability problems.

Usability �ndings can vary widely when di�erent evaluators study the same user interface,
even if they use the same evaluation technique [Bailey et al. 1992; Desurvire 1994; Je�ries et al. 1991;
Molich et al. 1998; Molich et al. 1999; Nielsen 1993]. As an example, two comparative usability
testing studies (CUE-1 [Molich et al. 1998] and CUE-2 [Molich et al. 1999]) demonstrated less than
a 1% overlap in �ndings among four and nine independent usability testing teams for evaluations
of two user interfaces2. This result implies a lack of systematicity or predictability in the �ndings

1Adapted from ISO9241 (Ergonomic requirements for oÆce work with visual display terminals [International Stan-
dards Organization 1999]).

2The �rst study involved four professional teams, while the second study involved seven professional teams and
two student teams. Details were not provided about study participants.
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of usability evaluations. Furthermore, usability evaluation typically only covers a subset of the
possible actions users might take. For these reasons, usability experts often recommend using
several di�erent evaluation techniques [Dix et al. 1998; Nielsen 1993].

How can systematicity of results and fuller coverage in usability assessment be achieved?
One solution is to increase the number of usability teams evaluating the system, and to increase the
number of study participants. An alternative is to automate some aspects of usability evaluation,
such as the capture, analysis, or critique activities.

Automating some aspects of usability evaluation has several potential advantages over
non-automated evaluation, such as:

� Increasing consistency of the errors uncovered. In some cases it is possible to develop models
of task completion within an interface, and software tools can consistently detect deviations
from these models. It is also possible to detect usage patterns that suggest possible errors,
such as immediate task cancellation.

� Increasing the coverage of evaluated features. Due to time, cost, and resource constraints,
it is not always possible to assess every single aspect of an interface. Software tools that
generate plausible usage traces make it possible to evaluate aspects of interfaces that may
not otherwise be assessed.

� Enabling comparisons between alternative designs. Because of time, cost, and resource con-
straints, usability evaluations typically assess only one design or a small subset of features
from multiple designs. Some automated analysis approaches, such as analytical modeling and
simulation, enable designers to compare predicted performance for alternative designs.

� Predicting time and error costs across an entire design. As previously discussed, it is not
always possible to assess every single aspect of an interface using non-automated evaluation.
Software tools, such as analytical models, make it possible to widen the coverage of evaluated
features.

� Reducing the need for evaluation expertise among individual evaluators. Automating some
aspects of evaluation, such as the analysis or critique activities, could aid designers who do
not have expertise in those aspects of evaluation.

� Reducing the cost of usability evaluation. Methods that automate capture, analysis, or cri-
tique activities can decrease the time spent on usability evaluation and consequently the cost.
For example, software tools that automatically log events during usability testing eliminate
the need for manual logging, which can typically take up a substantial portion of evaluation
time.

� Incorporating evaluation within the design phase of UI development, as opposed to being
applied after implementation. This is important because evaluation with most non-automated
methods can typically be done only after the interface or prototype has been built and changes
are more costly [Nielsen 1993]. Modeling and simulation tools make it possible to explore UI
designs earlier.

It is important to note that automation is considered to be a useful complement and
addition to standard evaluation techniques such as heuristic evaluation and usability testing { not
a substitute. Di�erent techniques uncover di�erent kinds of problems, and subjective measures
such as user satisfaction are unlikely to be predictable by automated methods.
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1. Specify usability evaluation goals.

2. Determine UI aspects to evaluate.

3. Identify target users.

4. Select usability metrics.

5. Select evaluation method(s).

6. Select tasks.

7. Design experiments.

8. Capture usability data.

9. Analyze and interpret usability data.

10. Critique UI to suggest improvements.

11. Iterate the process if necessary.

12. Present results.

Figure 2.1: Activities that may occur during the usability evaluation process.

Despite the potential advantages, the space of usability evaluation automation is quite
underexplored. This chapter presents a detailed survey of UE methods, with an emphasis on
automation; a shorter version of this survey is scheduled for publication [Ivory and Hearst 2001].
The chapter begins with a brief overview of the usability evaluation process. It introduces a
taxonomy for classifying UE automation and summarizes the application of this taxonomy to 133
usability evaluation methods. Several sections describe these methods in more detail, including
summative assessments of automation techniques. The results of this survey suggest promising
ways to expand existing approaches to better support usability evaluation; these approaches are
also discussed.

2.2 The Usability Evaluation Process

Usability evaluation is a process that entails some of the activities depicted in Figure 2.1,
depending on the method used. This section discusses each of these activities. Several literature
sources informed this discussion, including [Dix et al. 1998; Nielsen 1993; Shneiderman 1998].

2.2.1 Specify Usability Evaluation Goals

Usability evaluation is applicable at all stages of a UI life cycle (e.g., design, implemen-
tation, and re-design). At these various stages, di�erent UE goals are relevant. Below is a list of
typical UE goals.

� Specify UI requirements

� Evaluate design alternatives

� Identify speci�c usability problems
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� Improve UI performance

The evaluator must clearly specify the goals of the usability evaluation at the outset of
the study. These goals inuence other aspects of UI assessment, such as the UI components to
evaluate and appropriate evaluation methods.

2.2.2 Determine UI Aspects to Evaluate

Some UIs can be extremely large and complex, and an evaluation of all aspects may not be
economically feasible. Hence, the evaluator must determine speci�c UI aspects to evaluate. These
aspects must be consistent with the goals of the usability evaluation.

2.2.3 Identify Target Users

An interface may be intended for a large user community, but it is important to determine
user characteristics most relevant for the study and for the UI aspects in particular. If users are
employed during the study, they need to be as representative of the larger user community as
possible.

2.2.4 Select Usability Metrics

Usability metrics are a crucial component of the usability evaluation. The goal in selecting
these metrics is to choose a minimal number of metrics that reveal the maximum amount of usability
detail for the UI under study. ISO Standard 9241 [International Standards Organization 1999]
recommends using e�ectiveness, eÆciency, and satisfaction measures as described below.

� E�ectiveness is the accuracy and completeness with which users achieve speci�ed goals. Ex-
ample metrics include: percentage of goals achieved, functions learned, and errors corrected
successfully.

� EÆciency assesses the resources expended in relation to the accuracy and completeness with
which users achieve goals. Example metrics include: the time to complete a task, learning
time, and time spent correcting errors.

� Satisfaction reects users' freedom from discomfort and positive attitudes about use of an
interface. Example metrics include: ratings for satisfaction, ease of learning, and error han-
dling.

Metrics discussed above are quantitative in nature. Non-quantitative metrics could in-
clude, for example, speci�c heuristic violations identi�ed during a usability inspection.

2.2.5 Select Evaluation Method(s)

Choosing one or more usability evaluation methods is an important step of the UE process.
There are �ve classes of UE methods: usability testing, inspection, inquiry, analytical modeling, and
simulation. An inspection entails an evaluator using a set of criteria to identify potential usability
problems in an interface, while testing involves an evaluator observing3 participants interacting with

3During some usability testing, such as remote testing, the evaluator may not actually observe a participant
interacting with an interface. Other techniques, such as logging (discussed in Section 2.5.2), may be employed to
record the interaction for subsequent analysis.
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an interface (i.e., completing tasks) to determine usability problems. Similar to usability testing,
inquiry methods entail gathering subjective input (e.g., preferences) from participants, typically
through interviews, surveys, questionnaires, or focus groups. Analytical modeling and simulation
are engineering approaches to UE that enable evaluators to predict usability with user and interface
models. Sections 2.5 { 2.9 discuss the �ve method classes as well as methods within each of the
classes in more detail.

UE methods di�er along many dimensions, such as resource requirements, costs, results,
and applicability (i.e., at what stages of the interface development process). There is a wide range
of methods that one could employ at all stages of system development, which actually complicates
choosing an appropriate method. Human Factors Engineering, a company specializing in usability
evaluation, has an online resource, Ask Usability Advisor [Human Factors Engineering 1999a], that
recommends UE methods based on the following usability requirements: software development
stage (requirement, design, code, test, and deployment), personnel availability (usability experts,
participants, and software developers), usability dimensions to be measured (e�ectiveness, eÆciency,
and satisfaction), the need to obtain quantitative measures, and the need to do remote evaluation.
There are also two comprehensive archives of UE methods online - Usability Evaluation Methods
[Human Factors Engineering 1999b] and the Usability Methods Toolbox [Hom 1998].

UE methods uncover di�erent types of usability problems; therefore, it is often recom-
mended for evaluators to use multiple assessment methods [Je�ries et al. 1991; Molich et al. 1998;
Molich et al. 1999; Nielsen 1993]. For example, during a usability test, participants may also com-
plete questionnaires to provide subjective input; thus, enabling evaluators to gather quantitative
and qualitative data.

2.2.6 Select Tasks

Tasks are the most crucial part of the usability evaluation [Dix et al. 1998; Nielsen 1993;
Shneiderman 1998]. They must be appropriate for the UI aspects under study, the target users,
and the evaluation method. Other constraints may a�ect the selection of tasks, such as cost and
time limits during usability testing sessions, for instance.

2.2.7 Design Experiments

After completing the previously discussed activities, the evaluator may need to design
experiments for collecting usability data. In particular, the evaluator needs to decide on the number
of participants (evaluators and users), the evaluation procedure (this is largely dictated by the UE
method) as well as on the environment and system setup. The nature of experiments depends on the
evaluation method. Experiments may entail: completing tasks in a controlled manner (usability
testing); responding to speci�c questions (inquiry); or comparing alternative designs (analytical
modeling and simulation). It is also recommended that the evaluator conduct pilot runs during
this phase [Nielsen 1993], especially if user involvement is required.

2.2.8 Capture Usability Data

During this phase, the evaluator employs the UE method to record previously speci�ed
usability metrics. For some methods, such as usability testing and inspection, the evaluator may
also record speci�c usability problems encountered during evaluation.
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2.2.9 Analyze and Interpret Data

The primary goal of usability data analysis is to summarize the results in a manner that
informs interpretation. This summarization may entail statistical techniques based on the goals
of the UE. It may also entail creating a list of speci�c usability problems found along with their
severity.

Actually interpreting the results of the study is a key part of the evaluation. It entails
using the analysis of usability data to draw conclusions as dictated by the evaluation goals. For
example, it may mean concluding that one design is better than another or whether usability
requirements have been met.

2.2.10 Critique UI to Suggest Improvements

Ideally, analysis and interpretation of usability data illustrate aws in the UI design as
well as ways to possibly improve the design. Subsequent analysis may be required to verify that
suggested improvements actually improve interface usability.

2.2.11 Iterate Process

Analysis and interpretation of usability data may illustrate the need to repeat the UE
process. This iteration may be warranted due to the identi�cation of other UI aspects that need
evaluation or changes to the UI. Hence, UE may consist of several cycles through this process. This
is as expected when an evaluator follows usability engineering or iterative design processes [Dix
et al. 1998; Nielsen 1993].

2.2.12 Present Results

The �nal step of the usability evaluation process is to communicate the results and inter-
pretation of these results to the stakeholders. Ideally, the evaluator presents the results such that
they can be easily understood (e.g., using graphs and providing severity ratings) and acted upon.

2.3 Taxonomy of Usability Evaluation Automation

In this discussion, a distinction is made between WIMP (Windows, Icons, Pointer, and
Mouse) interfaces and Web interfaces, in part because the nature of these interfaces di�er and in
part because the usability evaluation methods discussed have often only been applied to one type
or the other in the literature. WIMP interfaces tend to be more functionally-oriented than Web
interfaces. In WIMP interfaces, users complete tasks, such as opening or saving a �le, by following
speci�c sequences of operations. Although there are some functional Web applications, most Web
interfaces o�er limited functionality (i.e., selecting links or completing forms), but the primary role
of many Web sites is to provide information. Of course, the two types of interfaces share many
characteristics; their di�erences are highlighted when relevant to usability evaluation.

Several surveys of UE methods for WIMP interfaces exist; Hom [1998] and Human Factors
Engineering [1999b] provide a detailed discussion of inspection, inquiry, and testing methods (these
terms are de�ned below). Several taxonomies of UE methods have also been proposed. The most
commonly used taxonomy is one that distinguishes between predictive (e.g., GOMS analysis and
cognitive walkthrough, also de�ned below) and experimental (e.g., usability testing) techniques
[Coutaz 1995]. White�eld et al. [1991] present another classi�cation scheme based on the presence
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or absence of a user and a computer. Neither of these taxonomies reect the automated aspects of
UE methods.

The sole existing survey of usability evaluation automation, by Balbo [1995], uses a tax-
onomy which distinguishes among four approaches to automation:

� Non Automatic: methods \performed by human factors specialists."

� Automatic Capture: methods that \rely on software facilities to record relevant informa-
tion about the user and the system, such as visual data, speech acts, and keyboard and mouse
actions."

� Automatic Analysis: methods that are \able to identify usability problems automatically."

� Automatic Critic: methods which \not only point out diÆculties but propose improve-
ments."

Balbo uses these categories to classify thirteen common and uncommon UE methods.
However, most of the methods surveyed require extensive human e�ort, because they rely on
formal usability testing and/or require extensive evaluator interaction. For example, Balbo classi�es
several techniques for processing log �les as automatic analysis methods despite the fact that these
approaches require formal testing or informal use to generate those log �les. What Balbo calls an
automatic critic method may require the evaluator to create a complex UI model as input. Thus,
this classi�cation scheme is somewhat misleading since it ignores the non-automated requirements
of the UE methods.

2.3.1 Proposed Taxonomy

To facilitate discussion of usability evaluation methods, UE methods are grouped along
the following four dimensions:

� Method Class: describes the type of evaluation conducted at a high level (e.g., usability
testing or simulation);

� Method Type: describes how the evaluation is conducted within a method class, such as
thinking-aloud protocol (usability testing class) or information processor modeling (simulation
class);

� Automation Type: describes the evaluation aspect that is automated (e.g., capture, anal-
ysis, or critique); and

� E�ort Level: describes the type of e�ort required to execute the method (e.g., model devel-
opment or interface usage).

Method Class

UE methods are classi�ed into �ve method classes: testing, inspection, inquiry, analytical
modeling, and simulation.

� Testing: an evaluator observes participants interacting with an interface (i.e., completing
tasks) to determine usability problems.
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� Inspection: an evaluator uses a set of criteria or heuristics to identify potential usability
problems in an interface.

� Inquiry: participants provide feedback on an interface via interviews, surveys, etc.

� Analytical Modeling: an evaluator employs user and interface models to generate usability
predictions.

� Simulation: an evaluator employs user and interface models to mimic a user interacting
with an interface and report the results of this interaction (e.g., simulated activities, errors,
and other quantitative measures).

UE methods in the testing, inspection, and inquiry classes are appropriate for formative
(i.e., identifying speci�c usability problems) and summative (i.e., obtaining general assessments of
usability) purposes. Analytical modeling and simulation are engineering approaches to UE that
enable evaluators to predict usability with user and interface models. Software engineering practices
have had a major inuence on the �rst three classes, while the latter two, analytical modeling and
simulation, are quite similar to performance evaluation techniques used to analyze the performance
of computer systems [Jain 1991]. Chapter 3 discusses performance evaluation techniques in detail.

Method Type

There are a wide range of evaluation methods within the testing, inspection, inquiry,
analytical modeling, and simulation classes. Rather than discuss each method individually, one
or more related methods are grouped into method types; this type typically describes how an
evaluation is performed. Sections 2.5 { 2.9 present method types.

Automation Type

Balbo's automation taxonomy (described above) was adapted to specify which aspect of
a usability evaluation method is automated: none, capture, analysis or critique.

� None: no level of automation supported (i.e., evaluator performs all aspects of the evaluation
method).

� Capture: software automatically records usability data (e.g., logging interface usage).

� Analysis: software automatically identi�es potential usability problems.

� Critique: software automates analysis and suggests improvements.

E�ort Level

Balbo's automation taxonomy is also expanded to include consideration of a
method's non-automated requirements. Each UE method is augmented with an attribute called
e�ort level; this indicates the human e�ort required for method execution:

� Minimal E�ort: does not require interface usage or modeling.

� Model Development: requires the evaluator to develop a UI model and/or a user model
to employ the method.
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Figure 2.2: Summary of the proposed taxonomy for classifying usability evaluation methods. The right
side of the �gure demonstrates the taxonomy with two evaluation methods that will be discussed in later
sections.

� Informal Use: requires completion of freely chosen tasks (i.e., unconstrained use by a user
or evaluator).

� Formal Use: requires completion of specially selected tasks (i.e., constrained use by a user
or evaluator).

These levels are not necessarily ordered by the amount of e�ort required, since this depends
on the method used.

Summary

Figure 2.2 provides a synopsis of the proposed taxonomy and demonstrates it with two
evaluation methods. The taxonomy consists of: a method class (testing, inspection, inquiry, analyt-
ical modeling, and simulation); a method type (e.g., log �le analysis, guideline review, surveys, etc.);
an automation type (none, capture, analysis, and critique); and an e�ort level (minimal, model,
informal, and formal). This taxonomy is used to analyze evaluation methods in the remainder of
this chapter.

2.4 Overview of Usability Evaluation Methods

Seventy-�ve UE methods applied to WIMP interfaces and �fty-eight methods applied to
Web UIs were surveyed and analyzed using the proposed taxonomy. Of these 133 methods, only
29 apply to both Web and WIMP UIs. The applicability of each method was determined based on
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the types of interfaces a method was used to evaluate in the literature and the author's judgment
of whether or not the method could be used with other types of interfaces. Tables 2.1 and 2.2
combine survey results for both types of interfaces showing method classes (bold entries in the �rst
column) and method types within each class (entries that are not bold in the �rst column). Each
entry in columns two through �ve depicts speci�c UE methods along with the automation support
available and the human e�ort required to employ automation. For some UE methods, more than
one approach will be discussed; hence, the number of methods surveyed is shown in parenthesis
beside the e�ort level.

Some approaches provide automation support for multiple method types (see Appendix
A). Hence, Tables 2.1 and 2.2 contain only 111 methods. Tables 2.1 and 2.2 also depict methods
applicable to both WIMP and Web UIs only once. Table 2.3 provides descriptions of all method
types.

There are major di�erences in automation support among the �ve method classes. Overall,
automation patterns are similar for WIMP and Web interfaces, with the exception that analytical
modeling and simulation are far less explored in the Web domain than for WIMP interfaces (two
vs. sixteen methods). Appendix A shows the information in Tables 2.1 and 2.2 separated by UI
type. Table 2.4 summarizes the number of non-automated and automated capture, analysis, and
critique methods surveyed overall and for each type of interface.

Tables 2.1 and 2.2 show that automation in general is greatly underexplored. Table 2.4
shows that methods without automation support represent 64% of the methods surveyed, while
methods with automation support collectively represent only 36%. Of this 36%, capture methods
represent 15%, analysis methods represent 19% and critique methods represent 2%. All but two
of the capture methods require some level of interface usage; genetic algorithms and information
scent modeling both use simulation to generate usage data for subsequent analysis. Of all of the
surveyed methods, only 29% are free from requirements of formal or informal interface use.

To provide the fullest automation support, software would have to critique interfaces
without requiring formal or informal use. The survey revealed that this level of automation has been
developed for only one method type: guideline review (e.g., [Farenc and Palanque 1999; Lowgren
and Nordqvist 1992; Scholtz and Laskowski 1998]). Guideline review methods automatically detect
and report usability violations and then make suggestions for �xing them (discussed further in
Section 2.6).

Of those methods that support the next level of automation { analysis { Tables 2.1 and
2.2 show that analytical modeling and simulation methods represent the majority. Most of these
methods do not require formal or informal interface use.

The next sections discuss the various UE methods and their automation in more detail.
Some methods are applicable to both WIMP and Web interfaces; however, distinctions are made
where necessary about a method's applicability. The discussion also presents assessments of auto-
mated capture, analysis, and critique techniques using the following criteria:

� E�ectiveness: how well a method discovers usability problems,

� Ease of use: how easy is a method to employ,

� Ease of learning: how easy is a method to learn, and

� Applicability: how widely applicable is a method to WIMP and/or Web UIs other than
those originally applied to.

The e�ectiveness, ease of use, ease of learning, and applicability of automated methods is
highlighted in discussions of each method class.
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Method Class Automation Type
Method Type None Capture Analysis Critique

Testing
Thinking-aloud Protocol F (1)
Question-asking Protocol F (1)
Shadowing Method F (1)
Coaching Method F (1)
Teaching Method F (1)
Co-discovery Learning F (1)
Performance Measurement F (1) F (8)
Log File Analysis IFM (20)�

Retrospective Testing F (1)
Remote Testing IF (3)

Inspection

Guideline Review IF (6) (8) M (11)y

Cognitive Walkthrough IF (2) F (1)
Pluralistic Walkthrough IF (1)
Heuristic Evaluation IF (1)
Perspective-based Inspection IF (1)
Feature Inspection IF (1)
Formal Usability Inspection F (1)
Consistency Inspection IF (1)
Standards Inspection IF (1)

Inquiry
Contextual Inquiry IF (1)
Field Observation IF (1)
Focus Groups IF (1)
Interviews IF (1)
Surveys IF (1)
Questionnaires IF (1) IF (2)
Self-reporting Logs IF (1)
Screen Snapshots IF (1)
User Feedback IF (1)

Table 2.1: Automation support for WIMP and Web UE methods (Table 1 of 2). A number in parentheses
indicates the number of UE methods surveyed for a particular method type and automation type. The e�ort
level for each method is represented as: minimal (blank), formal (F), informal (I) and model (M). The * for
the IFM entry indicates that either formal or informal interface use is required. In addition, a model may
be used in the analysis. The y indicates that methods may or may not require a model.
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Method Class Automation Type
Method Type None Capture Analsis Critique

Analytical Modeling
GOMS Analysis M (4) M (2)
UIDE Analysis M (2)
Cognitive Task Analysis M (1)
Task-environment Analysis M (1)
Knowledge Analysis M (2)
Design Analysis M (2)
Programmable User Models M (1)

Simulation
Information Proc. Modeling M (9)
Petri Net Modeling FM (1)
Genetic Algorithm Modeling (1)
Information Scent Modeling M (1)

Table 2.2: Automation support for WIMP and Web UE methods (Table 2 of 2). A number in parentheses
indicates the number of UE methods surveyed for a particular method type and automation type. The e�ort
level for each method is represented as: minimal (blank), formal (F), informal (I) and model (M).

2.5 Usability Testing Methods

Usability testing with real participants is a fundamental evaluation method [Nielsen 1993;
Shneiderman 1998]. It provides an evaluator with direct information about how people use com-
puters and what some of the problems are with the interface being tested. During usability testing,
participants use the system or a prototype to complete a pre-determined set of tasks while the
tester or software records the results of the participants' work. The tester then uses these results
to determine how well the interface supports users' task completion and to derive other measures,
such as the number of errors and task completion time.

Automation has been used predominantly in two ways within usability testing: automated
capture of use data and automated analysis of this data according to some metrics or a model
(referred to as log �le analysis in Table 2.1). In rare cases methods support both automated
capture and analysis of usage data [Al-Qaimari and McRostie 1999; Hong et al. 2001; Uehling and
Wolf 1995].

2.5.1 Usability Testing Methods: Non-automated

This section provides a synopsis of eight non-automated method types. All method types
have been or could be applied to both WIMP and Web UIs and require formal interface usage.
Two testing protocols, thinking-aloud and question-asking, and six non-automated method types
were surveyed; the testing protocols can be used with the other six method types in most cases.
The major di�erences among the testing method types are the actual testing procedure (e.g.,
participants are silent, think aloud, or have the ability to ask an expert questions) and the intended
outcome of testing (e.g., an understanding of the participant's mental model of the system or
quantitative data).

Method types are summarized below. The method type (i.e., how an evaluation is per-
formed) and the method (i.e., speci�c instantiation of a method type) are the same in all cases.
Unless otherwise noted, most discussions are based on [Dix et al. 1998; Hom 1998; Human Factors
Engineering 1999b; Nielsen 1993; Shneiderman 1998].
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Method Class
Method Type Description

Testing
Thinking-aloud Protocol user talks during test
Question-asking Protocol tester asks user questions
Shadowing Method expert explains user actions to tester
Coaching Method user can ask an expert questions
Teaching Method expert user teaches novice user
Co-discovery Learning two users collaborate
Performance Measurement tester or software records usage data during test
Log File Analysis tester analyzes usage data
Retrospective Testing tester reviews videotape with user
Remote Testing tester and user are not co-located during test

Inspection
Guideline Review expert checks guideline conformance
Cognitive Walkthrough expert simulates user's problem solving
Pluralistic Walkthrough multiple people conduct cognitive walkthrough
Heuristic Evaluation expert identi�es heuristic violations
Perspective-based Inspection expert conducts narrowly focused heuristic evaluation
Feature Inspection expert evaluates product features
Formal Usability Inspection experts conduct formal heuristic evaluation
Consistency Inspection expert checks consistency across products
Standards Inspection expert checks for standards compliance

Inquiry
Contextual Inquiry interviewer questions users in their environment
Field Observation interviewer observes system use in user's environment
Focus Groups multiple users participate in a discussion session
Interviews one user participates in a discussion session
Surveys interviewer asks user speci�c questions
Questionnaires user provides answers to speci�c questions
Self-reporting Logs user records UI operations
Screen Snapshots user captures UI screens
User Feedback user submits comments

Analytical Modeling
GOMS Analysis predict execution and learning time
UIDE Analysis conduct GOMS analysis within a UIDE
Cognitive Task Analysis predict usability problems
Task-environment Analysis assess mapping of user's goals into UI tasks
Knowledge Analysis predict learnability
Design Analysis assess design complexity
Programmable User Models write program that acts like a user

Simulation
Information Proc. Modeling mimic user interaction
Petri Net Modeling mimic user interaction from usage data
Genetic Algorithm Modeling mimic novice user interaction
Information Scent Modeling mimic Web site navigation

Table 2.3: Descriptions of the WIMP and Web UE method types depicted in Table 2.1.



17

Methods Automation Type
Surveyed None Capture Analysis Critique

Overall
Total 30 7 9 1
Percent 64% 15% 19% 2%

WIMP UIs
Total 30 5 8 1
Percent 68% 11% 18% 2%

Web UIs
Total 26 5 4 1
Percent 72% 14% 11% 3%

Table 2.4: Summary of UE methods surveyed for each automation type.

Thinking-aloud Protocol. The thinking-aloud protocol requires participants to verbalize their
thoughts, feelings, and opinions during a usability test. One goal of this approach is to enable
the tester to get a better understanding of the participant's mental model during interaction
with the interface. Critical response and periodic report are two variations of the protocol
wherein the participant is vocal only during the execution of certain pre-determined tasks or
at pre-determined intervals of time, respectively.

Question-asking Protocol. This method is an extension of the thinking-aloud protocol wherein
testers prompt participants by asking direct questions about the interface. The goal of such
questioning is to enable the tester to get an even better understanding of the participant's
mental model of the system.

Coaching Method. The coaching method allows participants to ask any system-related questions
of an expert coach during usability testing. Usually, the tester acts as the expert coach, but
it is possible to have a separate tester serving as a coach. The latter approach may allow
the tester to gain additional usability insight through observing the interaction between the
participant and coach. In cases where an expert user serves as the coach, this also enables the
tester to analyze the expert user's mental model of the system. The main goal of this method
is to determine the information needs of users to provide better training and documentation
in addition to possibly redesigning the interface to eliminate the need for questions in the
�rst place. It is also possible for the tester to control the answers given to questions during
testing to discover what types of answers help users the most.

Teaching Method. For this method, the participant interacts with the system �rst to develop
expertise to subsequently teach a novice user about the system. The novice user serves as a
student and does not actively engage in problem solving. The participant does the problem
solving, explains to the novice user how the system works, and demonstrates a set of pre-
determined tasks. This method enables testers to assess the ease of learning of an interface.

Shadowing Method. Shadowing is an alternative to the thinking-aloud protocol wherein an ex-
pert user sits next to the tester and explains the participant's behavior during the testing
session. Evaluators use this method in situations where it is inappropriate for participants to
think aloud or talk to the tester (e.g., collecting performance measurements).

Co-discovery Learning. During a co-discovery learning session, two participants attempt to per-
form the tasks together while the tester observes their interaction. This approach is similar
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to the type of collaboration that occurs naturally in other environments, such as at work. As
the participants complete tasks, the tester encourages them to explain what they are thinking
about in a manner similar to the thinking-aloud protocol.

Performance Measurement. The goal of this testing method is to capture quantitative data
about participants' performance when they complete tasks. As such, there is usually no in-
teraction between the tester and participant during the test. Evaluators usually conduct such
testing in a usability lab to facilitate accurate data collection and to minimize interference.
Sometimes this method is combined with other techniques to capture qualitative data as well,
such as retrospective testing (discussed immediately below).

Measurement studies form the foundation of usability testing, since evaluators can use the
results to assess whether the usability goals have been met as well as for competitive analysis.
In the �rst case the evaluator would re-de�ne an abstract performance goal, such as usability,
into a speci�c usability attribute, such as eÆciency of use. After specifying a speci�c usability
attribute, the evaluator can quantify this attribute with a metric (e.g., time to complete a
task, time spent recovering from errors, etc.) and devise a plan for measuring this metric
in the interface and collecting the necessary performance data. Without automated tools,
this collection is typically accomplished by taking notes or video taping testing sessions and
subsequently reviewing the videotape to compute performance measures.

MUSiC (Metrics for Usability Standards in Computing) [Bevan and Macleod 1994; Macleod
et al. 1997] is a rigorous performance measurement method developed by a consortium of
European institutions, including Serco Usability Services (formerly the National Physical
Laboratory), the University College Cork, and the HUSAT (Human Sciences and Advanced
Technology) Institute. Applying the methodology entails: conducting a formal usability
context analysis (i.e., determining who the users are, how they use the UI, and in what
situations they use it) and following the performance measurement method [Rengger et al.
1993] as prescribed. MUSiC includes tools to support automated analysis of video recording
using DRUM (Diagnostic Recorder for Usability Measurement, discussed in Section 2.5.2)
[Macleod and Rengger 1993] as well as collecting subjective usability data via the SUMI
(Software Usability Measurement Inventory, discussed in Section 2.7.2) [Porteous et al. 1993]
questionnaire.

Retrospective Testing. This method is a followup to any other videotaped testing session wherein
the tester and participant review the videotape together. During this review, the tester asks
the participant questions regarding her behavior during the test. The goal of this review is to
collect additional information from the usability test. Although such testing can be valuable,
it substantially increases the cost of usability testing because each test takes at least twice as
long to conduct.

2.5.2 Usability Testing Methods: Automated Capture

Many usability testing methods require the recording of actions a user makes while exer-
cising an interface. This can be done by an evaluator taking notes while the participant uses the
system, either live or by repeatedly viewing a videotape of the session; both are time-consuming
activities. As an alternative, automated capture techniques can log user activity automatically.
An important distinction can be made between information that is easy to record but diÆcult
to interpret, such as keystrokes, and information that is meaningful but diÆcult to automatically
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Method Class: Testing
Automation Type: Capture

Method Type: Performance Measurement - software records usage data during
test (8 methods)

UE Method UI E�ort
Log low-level events ([Hammontree et al. 1992]) WIMP F
Log UIMS events (UsAGE, IDCAT) WIMP F
Log system-level events (KALDI) WIMP F
Log Web server requests ([Scholtz and Laskowski 1998]) Web F
Log client-side activities (WebVIP, WET) Web F
Log Web proxy requests (WebQuilt) Web F

Method Type: Remote Testing - tester and user are not co-located (3 methods)
UE Method UI E�ort
Employ same-time di�erent-place testing (KALDI) WIMP, Web IF
Employ di�erent-time di�erent-place testing (journaled WIMP, Web IF
sessions)
Analyze a Web site's information organization (WebCAT) Web IF

Table 2.5: Synopsis of automated capture support for usability testing methods.

label, such as task completion. Automated capture approaches vary with respect to the granularity
of information captured.

Within the usability testing class of UE, automated capture of usage data is supported by
two method types: performance measurement and remote testing. Both require the instrumentation
of a user interface, incorporation into a user interface management system (UIMS), or capture at the
system level. A UIMS [Olsen, Jr. 1992] is a software library that provides high-level abstractions for
specifying portable and consistent interface models that are then compiled into UI implementations
on each platform similarly to Java programs. Table 2.5 provides a synopsis of automated capture
methods discussed in the remainder of this section. Support available for WIMP and Web UIs is
discussed separately.

Usability Testing Methods: Automated Capture { WIMP UIs

Performance measurement methods record usage data (e.g., a log of events and times when
events occurred) during a usability test. Video recording and event logging tools [Al-Qaimari and
McRostie 1999; Hammontree et al. 1992; Uehling and Wolf 1995] are available to automatically and
accurately align timing data with user interface events. Some event logging tools (e.g., [Hammontree
et al. 1992]) record events at the keystroke or system level. Recording data at this level produces
voluminous log �les and makes it diÆcult to map recorded usage into high-level tasks.

As an alternative, two systems log events within a UIMS. UsAGE (User Action Graphing
E�ort)4 [Uehling and Wolf 1995] enables the evaluator to replay logged events, meaning it can
replicate logged events during playback. This requires that the same study data (databases, docu-
ments, etc.) be available during playback as was used during the usability test. IDCAT (Integrated
Data Capture and Analysis Tool) [Hammontree et al. 1992] logs events and automatically �lters
and classi�es them into meaningful actions. This system requires a video recorder to synchronize
taped footage with logged events. KALDI (Keyboard/mouse Action Logger and Display Instru-
ment) [Al-Qaimari and McRostie 1999] supports event logging and screen capturing via Java and

4This method is not to be confused with the USAGE analytical modeling approach discussed in Section 2.8.
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does not require special equipment. Both KALDI and UsAGE also support log �le analysis (see
Section 2.5.3).

Remote testing methods enable testing between a tester and participant who are not co-
located. In this case the evaluator is not able to observe the user directly, but can gather data
about the process over a computer network. Remote testing methods are distinguished according
to whether or not a tester observes the participant during testing or not. Same-time di�erent-place
and di�erent-time di�erent-place are two major remote testing approaches [Hartson et al. 1996].

In same-time di�erent-place or remote-control testing the tester observes the participant's
screen through network transmissions (e.g., using PC Anywhere or Timbuktu) and may be able to
hear what the participant says via a speaker telephone or a microphone aÆxed to the computer.
Software makes it possible for the tester to interact with the participant during the test, which
is essential for techniques like the question-asking or thinking aloud protocols that require such
interaction.

The tester does not observe the user during di�erent-time di�erent-place testing. An
example of this approach is the journaled session [Nielsen 1993], in which software guides the
participant through a testing session and logs the results. Evaluators can use this approach with
prototypes to get feedback early in the design process, as well as with released products. In the early
stages, evaluators distribute disks containing a prototype of a software product and embedded code
for recording users' actions. Users experiment with the prototype and return the disks to evaluators
upon completion. It is also possible to embed dialog boxes within the prototype to record users'
comments or observations during usage. For released products, evaluators use this method to
capture statistics about the frequency with which the user has used a feature or the occurrence of
events of interest (e.g., error messages). This information is valuable for optimizing frequently-used
features and the overall usability of future releases.

Remote testing approaches allow for wider testing than traditional methods, but evalua-
tors may experience technical diÆculties with hardware and/or software components (e.g., inability
to correctly con�gure monitoring software or network failures). This can be especially problem-
atic for same-time di�erent-place testing where the tester needs to observe the participant during
testing. Most techniques also have restrictions on the types of UIs to which they can be applied.
This is mainly determined by the underlying hardware (e.g., PC Anywhere only operates on PC
platforms) [Hartson et al. 1996]. KALDI, mentioned above, also supports remote testing. Since it
was developed in Java, evaluators can use it for same- and di�erent-time testing of Java applications
on a wide range of computing platforms.

Usability Testing Methods: Automated Capture { Web UIs

The Web enables remote testing and performance measurement on a much larger scale
than is feasible with WIMP interfaces. Both same-time di�erent-place and di�erent-time di�erent-
place approaches can be employed for remote testing of Web UIs. Similar to journaled sessions,
Web servers maintain usage logs and automatically generate a log �le entry for each request. These
entries include the IP address of the requester, request time, name of the requested Web page, and
in some cases the URL of the referring page (i.e., where the user came from). Server logs cannot
record user interactions that occur only on the client side (e.g., use of within-page anchor links or
back button), and the validity of server log data is questionable due to caching by proxy servers
and browsers [Etgen and Cantor 1999; Scholtz and Laskowski 1998]. Server logs may not reect
usability, especially since these logs are often diÆcult to interpret [Schwartz 2000] and users' tasks
may not be discernible [Byrne et al. 1999; Schwartz 2000].

Client-side logs capture more accurate, comprehensive usage data than server-side logs
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because they allow all browser events to be recorded. Such logging may provide more insight about
usability. On the downside, it requires every Web page to be modi�ed to log usage data, or else
use of an instrumented browser or special proxy server.

The NIST WebMetrics tool suite [Scholtz and Laskowski 1998] captures client-side usage
data. This suite includes WebVIP (Web Visual Instrumentor Program), a visual tool that enables
the evaluator to add event handling code to Web pages. This code automatically records the page
identi�er and a time stamp in an ASCII �le every time a user selects a link. (This package also
includes a visualization tool, VISVIP [Cugini and Scholtz 1999], for viewing logs collected with
WebVIP; see Section 2.5.3.) Using this client-side data, the evaluator can accurately measure time
spent on tasks or particular pages as well as study use of the back button and user clickstreams.
Despite its advantages over server-side logging, WebVIP requires the evaluator to make a copy
of an entire Web site, which could lead to invalid path speci�cations and other diÆculties with
getting the copied site to function properly. The evaluator must also add logging code to each
individual link on a page. Since WebVIP only collects data on selected HTML links, it does not
record interactions with other Web objects, such as forms. It also does not record usage of external
or non-instrumented links.

Similar to WebVIP, the Web Event-logging Tool (WET) [Etgen and Cantor 1999] supports
the capture of client-side data, including clicks on Web objects, window resizing, typing in a form
object and form resetting. WET interacts with Microsoft Internet Explorer and Netscape Navigator
to record browser event information, including the type of event, a time stamp, and the document-
window location. This gives the evaluator a more complete view of the user's interaction with a
Web interface than WebVIP. WET does not require as much e�ort to employ as WebVIP, nor does
it su�er from the same limitations. To use this tool, the evaluator speci�es events (e.g., clicks,
changes, loads, and mouseovers) and event handling functions in a text �le on the Web server;
sample �les are available to simplify this step. The evaluator must also add a single call to the text
�le within the <head> tag of each Web page to be logged. Currently, the log �le analysis for both
WebVIP and WET is manual. Future work has been proposed to automate this analysis.

As an alternative to server-side and client-side logging, WebQuilt [Hong et al. 2001] uses
proxy-based logging to capture usage data. The system automatically captures Web server requests
using a special proxy server, logs requests, and subsequently routes requests to the Web server. All
of the links in Web pages are also redirected to the proxy server; this eliminates the need for users
to manually con�gure their browsers to route requests to the proxy. The system captures more
accurate site usage details (e.g., use of the back button) than server-side logging, makes it possible
to run usability tests on any Web site (e.g., for competitive analysis), and makes it possible to
track participants accurately, since extra information can be encoded in the study URL. Although
the system does not capture many client-side details, such as the use of page elements or window
resizing, it does simplify instrumenting a site for logging, since this is done automatically. The
WebQuilt system also supports task-based analysis and visualization of captured usage data (see
Section 2.5.3).

The NIST WebMetrics tool suite also includes WebCAT (Category Analysis Tool), a tool
that aids in Web site category analysis, by a technique sometimes known as card sorting [Nielsen
1993]. In non-automated card sorting, the evaluator (or a team of evaluators) writes concepts
on pieces of paper, and users group the topics into piles. The evaluator manually analyzes these
groupings to determine a good category structure. WebCAT allows the evaluator to test proposed
topic categories for a site via a category matching task (a variation of card-sorting where users
assign concepts to prede�ned categories); this task can be completed remotely by users. Results
are compared to the designer's category structure, and the evaluator can use the analysis to inform
the best information organization for a site. WebCAT enables wider testing and faster analysis than
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traditional card sorting, and helps make the technique scale for a large number of topic categories.

Usability Testing Methods: Automated Capture { Discussion

Automated capture methods represent important �rst steps toward informing UI improve-
ments { they provide input data for analysis and in the case of remote testing, enable the evaluator
to collect data for a larger number of users than traditional methods. Without this automation,
evaluators would have to manually record usage data, expend considerable time reviewing video-
taped testing sessions or in the case of the Web, rely on questionable server logs. Methods such
as KALDI and WET capture high-level events that correspond to speci�c tasks or UI features.
KALDI also supports automated analysis of captured data as discussed below.

Table 2.5 summarizes performance measurement and remote testing methods discussed in
this section. It is diÆcult to assess the ease of use and learning of these approaches, especially ID-
CAT and remote testing approaches that require integration of hardware and software components,
such as video recorders and logging software. For client-side Web site logging, WET appears to
be easier to use and learn than WebVIP. It requires the creation of an event handling �le and the
addition of a small block of code in each Web page header, while WebVIP requires the evaluator to
add code to every link on all Web pages. WET also enables the evaluator to capture more compre-
hensive usage data than WebVIP. WebQuilt is easier to use and learn than WET because a proxy
server automatically instruments a site for logging; however, it does not capture the same level of
detail as client-side logging. WebCAT appears straightforward to use and learn for topic category
analysis. Both remote testing and performance measurement techniques have restrictions on the
types of UIs to which they can be applied. This is mainly determined by the underlying hardware
(e.g., PC Anywhere only operates on PC platforms) or UIMS, although KALDI can potentially be
used to evaluate Java applications on a wide range of platforms.

2.5.3 Usability Testing Methods: Automated Analysis

Log �le analysis methods automate the analysis of data captured during formal or informal
interface use. Since Web servers automatically log client requests, log �le analysis is a heavily used
methodology for evaluating Web interfaces [Drott 1998; Fuller and de Graa� 1996; Hochheiser
and Shneiderman 2001; Sullivan 1997]. The survey revealed four general approaches for analyzing
WIMP and Web log �les: metric-based, pattern-matching, task-based, and inferential. Table 2.6
provides a synopsis of automated analysis methods discussed in the remainder of this section.
Support available for the four general approaches is discussed separately.

Usability Testing Methods: Automated Analysis { Metric-Based Analysis of Log Files

Metric-based approaches generate quantitative performance measurements. Three ex-
amples for WIMP interfaces are DRUM [Macleod and Rengger 1993], the MIKE UIMS [Olsen,
Jr. and Halversen 1988], and AMME (Automatic Mental Model Evaluator) [Rauterberg 1995;
Rauterberg 1996b; Rauterberg and Aeppili 1995]. DRUM enables the evaluator to review a video
tape of a usability test and manually log starting and ending points for tasks. DRUM processes
this log and derives several measurements, including: task completion time, user eÆciency (i.e.,
e�ectiveness divided by task completion time), and productive period (i.e., portion of time the
user did not have problems). DRUM also synchronizes the occurrence of events in the log with
videotaped footage, thus speeding up video analysis.

The MIKE UIMS enables an evaluator to assess the usability of a UI speci�ed as a model
that can be rapidly changed and compiled into a functional UI. MIKE captures usage data and
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Method Class: Testing
Automation Type: Analysis

Method Type: Log File Analysis - analyze usage data (20 methods)
UE Method UI E�ort
Use metrics during log �le analysis (DRUM, MIKE WIMP IF
UIMS, AMME)
Use metrics during log �le analysis (Service Metrics, Web IF
[Bacheldor 1999])
Use pattern matching during log �le analysis (MRP) WIMP IF
Use task models during log �le analysis (IBOT, QUIP, WIMP IF
WebQuilt, KALDI, UsAGE)
Use task models and pattern matching during log WIMP IFM

�le analysis (�EMA, USINE, RemUSINE)
Visualization of log �les ([Guzdial et al. 1994]) WIMP IF
Statistical analysis or visualization of log �les (traÆc- Web IF
and time-based analyses, VISVIP, Star�eld and Dome
Tree visualizations)

Table 2.6: Synopsis of automated analysis support for usability testing methods.

generates a number of general, physical, logical, and visual metrics, including performance time,
command frequency, the number of physical operations required to complete a task, and required
changes in the user's focus of attention on the screen. MIKE also calculates these metrics separately
for command selection (e.g., traversing a menu, typing a command name, or hitting a button)
and command speci�cation (e.g., entering arguments for a command) to help the evaluator locate
speci�c problems within the UI.

AMME employs petri nets [Petri 1973] to reconstruct and analyze the user's problem
solving process. It requires a specially-formatted log �le and a manually-created system description
�le (i.e., a list of interface states and a state transition matrix) to generate the petri net. It then
computes measures of behavioral complexity (i.e., steps taken to perform tasks), routinization (i.e.,
repetitive use of task sequences), and ratios of thinking vs. waiting time. User studies with novices
and experts validated these quantitative measures and showed behavioral complexity to correlate
negatively with learning (i.e., less steps are taken to solve tasks as a user learns the interface)
[Rauterberg and Aeppili 1995]. Hence, the behavioral complexity measure provides insight on
interface complexity. It is also possible to simulate the generated petri net (see Section 2.9) to
further analyze the user's problem solving and learning processes. Multidimensional scaling and
Markov analysis tools are available for comparing multiple petri nets (e.g., nets generated from
novice and expert user logs). Since AMME processes log �les, it could easily be extended to Web
interfaces.

For the Web, site analysis tools developed by Service Metrics [Service Metrics 1999] and
others [Bacheldor 1999] allow evaluators to pinpoint performance bottlenecks, such as slow server
response time, that may negatively impact the usability of a Web site. Service Metrics' tools,
for example, can collect performance measures from multiple geographical locations under various
access conditions. In general, performance measurement approaches focus on server and network
performance, but provide little insight into the usability of the Web site itself.
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Figure 2.3: QUIP usage pro�le contrasting task ows for two users to the designer's task ow (diagonal
shading) [Helfrich and Landay 1999]. Each node represents a user action, and arrows indicate actions taken by
users. The width of arrows denotes the fraction of users completing actions, while the color of arrows reects
the average time between actions (darker colors correspond to longer time). Reprinted with permission of
the authors.

Usability Testing Methods: Automated Analysis { Pattern-Matching Analysis of Log
Files

Pattern-matching approaches, such as MRP (Maximum Repeating Pattern) [Siochi and
Hix 1991], analyze user behavior captured in logs. MRP detects and reports repeated user ac-
tions (e.g., consecutive invocations of the same command and errors) that may indicate usability
problems. Studies with MRP showed the technique to be useful for detecting problems with ex-
pert users, but additional data pre�ltering was required for detecting problems with novice users.
Whether the evaluator performed this pre�ltering or it was automated is unclear in the literature.

Three evaluation methods employ pattern matching in conjunction with task models.
These methods are discussed immediately below.

Usability Testing Methods: Automated Analysis { Task-Based Analysis of Log Files

Task-based approaches analyze discrepancies between the designer's anticipation of the
user's task model and what a user actually does while using the system. The IBOT system [Zettle-
moyer et al. 1999] automatically analyzes log �les to detect task completion events. The IBOT
system interacts with Windows operating systems to capture low-level window events (e.g., key-
board and mouse actions) and screen bu�er information (i.e., a screen image that can be processed
to automatically identify widgets). The system then combines this information into interface ab-
stractions (e.g., menu select and menubar search operations). Evaluators can use the system to
compare user and designer behavior on these tasks and to recognize patterns of ineÆcient or in-
correct behaviors during task completion. Without such a tool, the evaluator has to study the log
�les and do the comparison manually. Future work has been proposed to provide critique support.

The QUIP (Quantitative User Interface Pro�ling) tool [Helfrich and Landay 1999] and
KALDI [Al-Qaimari and McRostie 1999] (see previous section) provide more advanced approaches
to task-based, log �le analysis for Java UIs. Unlike other approaches, QUIP aggregates traces of
multiple user interactions and compares the task ows of these users to the designer's task ow.
QUIP encodes quantitative time-based and trace-based information into directed graphs (see Figure
2.3). For example, the average time between actions is indicated by the color of each arrow, and the
proportion of users who performed a particular sequence of actions is indicated by the width of each
arrow. The designer's task ow is indicated by the diagonal shading in Figure 2.3. Currently, the
evaluator must instrument the UI to collect the necessary usage data, and must manually analyze
the graphs to identify usability problems.

WebQuilt [Hong et al. 2001] provides a graphical depiction of usage data captured via a
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Figure 2.4: WebQuilt visualization contrasting task ows for twelve users to the designer's task ow (path
across the top with thick shading) [Hong et al. 2001]. The circle on the left shows the start of the task, while
the circle on the right shows the end of the task. Each thumbnail corresponds to a page in the Web site,
and arrows indicate actions taken by users. The width of arrows denotes the fraction of users traversing the
path, while the color of arrows reects the average time users spent on pages before clicking a link (darker
colors correspond to longer time). The interface enables evaluators to view usage data at di�erent levels of
detail. Reprinted with permission of the authors.

special proxy server. The visualization is very similar to QUIP, in that it aggregates usage data
and summarizes task completion with arrows showing actions taken by users, the percentages of
users taking the actions (width), and the average times users spent on pages before selecting links
(color). WebQuilt also enables the evaluator to view the usage data at multiple levels of detail
using a zooming interface. For example, if users spent a considerable amount of time on a Web
page, the evaluator could view the actual page within the interface.

KALDI captures usage data and screen shots for Java applications. It also enables the
evaluator to classify tasks (both manually and via automatic �lters), compare user performance on
tasks, and playback synchronized screen shots. It depicts logs graphically to facilitate analysis.

UsAGE [Uehling and Wolf 1995], which also supports logging usage data within a UIMS,
provides a similar graphical presentation for comparing event logs for expert and novice users.
However, graph nodes are labeled with UIMS event names, thus making it diÆcult to map events
to speci�c interface tasks. To mitigate this shortcoming, UsAGE allows the evaluator to replay
recorded events in the interface.

Several systems incorporate pattern-matching (see discussion above) into their analyses.
This combination results in the most advanced log �le analysis of all of the approaches surveyed.
These systems include �EMA (Automatic Analysis Mechanism for the Ergonomic Evaluation of
User Interfaces) [Balbo 1996], USINE (USer Interface Evaluator) [Lecerof and Patern�o 1998], and
RemUSINE (Remote USer Interface Evaluator) [Patern�o and Ballardin 1999], all discussed below.



26

�EMA uses a manually-created data-ow task model and standard behavior heuristics
to ag usage patterns that may indicate usability problems. �EMA extends the MRP approach
(repeated command execution) to detect additional patterns, including immediate task cancellation,
shifts in direction during task completion, and discrepancies between task completion and the task
model. �EMA outputs results in an annotated log �le, which the evaluator must manually inspect
to identify usability problems. Application of this technique to the evaluation of ATM (Automated
Teller Machine) usage corresponded with problems identi�ed using standard heuristic evaluation
[Balbo 1996].

USINE [Lecerof and Patern�o 1998] employs the ConcurTaskTrees [Patern�o et al. 1997]
notation to express temporal relationships among UI tasks (e.g., enabling, disabling, and synchro-
nization). Using this information, USINE looks for precondition errors (i.e., task sequences that
violate temporal relationships) and also reports quantitative metrics (e.g., task completion time)
and information about task patterns, missing tasks, and user preferences reected in the usage
data. Studies with a graphical interface showed that USINE's results correspond with empirical
observations and highlight the source of some usability problems. To use the system, evaluators
must create task models using the ConcurTaskTrees editor as well as a table specifying mappings
between log entries and the task model. USINE processes log �les and outputs detailed reports and
graphs to highlight usability problems. RemUSINE [Patern�o and Ballardin 1999] is an extension
that analyzes multiple log �les (typically captured remotely) to enable comparison across users.

Usability Testing Methods: Automated Analysis { Inferential Analysis of Log Files

Inferential analysis of Web log �les includes both statistical and visualization techniques.
Statistical approaches include traÆc-based analysis (e.g., pages-per-visitor or visitors-per-page) and
time-based analysis (e.g., click paths and page-view durations) [Drott 1998; Fuller and de Graa�
1996; Sullivan 1997; Theng and Marsden 1998]. Some methods require manual pre-processing or
�ltering of the logs before analysis. Furthermore, the evaluator must interpret reported measures
to identify usability problems. Software tools, such as WebTrends [WebTrends Corporation 2000],
facilitate analysis by presenting results in graphical and report formats.

Statistical analysis is largely inconclusive for Web server logs, since they provide only a
partial trace of user behavior and timing estimates may be skewed by network latencies. Server log
�les are also missing valuable information about what tasks users want to accomplish [Byrne et al.
1999; Schwartz 2000]. Nonetheless, statistical analysis techniques have been useful for improving
usability and enable ongoing, cost-e�ective evaluation throughout the life of a site [Fuller and
de Graa� 1996; Sullivan 1997].

Visualization is also used for inferential analysis of WIMP andWeb log �les [Chi et al. 2000;
Cugini and Scholtz 1999; Guzdial et al. 1994; Hochheiser and Shneiderman 2001]. It enables
evaluators to �lter, manipulate, and render log �le data in a way that ideally facilitates analysis.
[Guzdial et al. 1994] propose several techniques for analyzing WIMP log �les, such as color coding
patterns and command usage, tracking screen updates, and tracking mouseclick locations and depth
(i.e., number of times the user clicked the mouse in screen areas). However, there is no discussion
of how e�ective these approaches are in supporting analysis.

Star�eld visualization [Hochheiser and Shneiderman 2001] is one approach that enables
evaluators to interactively explore Web server log data to gain an understanding of human factors
issues related to visitation patterns. This approach combines the simultaneous display of a large
number of individual data points (e.g., URLs requested versus time of requests) in an interface that
supports zooming, �ltering, and dynamic querying [Ahlberg and Shneiderman 1994]. Visualizations
provide a high-level view of usage patterns (e.g., usage frequency, correlated references, bandwidth
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usage, HTTP errors, and patterns of repeated visits over time) that the evaluator must explore
to identify usability problems. It would be bene�cial to employ a statistical analysis approach to
study traÆc, clickstreams, and page views prior to exploring visualizations.

The Dome Tree visualization [Chi et al. 2000] provides an insightful representation of
simulated (see Section 2.9) and actual Web usage captured in server log �les. This approach maps
a Web site into a three dimensional surface representing the hyperlinks (see top part of Figure
2.5). The location of links on the surface is determined by a combination of content similarity, link
usage, and link structure of Web pages. The visualization highlights the most commonly traversed
subpaths. An evaluator can explore these usage paths to possibly gain insight about the information
\scent" (i.e., common topics among Web pages on the path) as depicted in the bottom window of
Figure 2.5. This additional information may help the evaluator infer what the information needs
of site users are, and more importantly, may help infer whether the site satis�es those needs. The
Dome Tree visualization also reports a crude path traversal time based on the sizes of pages (i.e.,
number of bytes in HTML and image �les) along the path. Server log accuracy limits the extent
to which this approach can successfully indicate usability problems. As is the case for Star�eld
visualization, it would be bene�cial to statistically analyze log �les prior to using this approach.

VISVIP [Cugini and Scholtz 1999] is a three-dimensional tool for visualizing log �les
compiled by WebVIP during usability testing (see previous section). Figure 2.6 shows VISVIP's
Web site (top graph) and usage path (bottom graph) depictions to be similar to the Dome Tree
visualization approach. VISVIP generates a 2D layout of the site where adjacent nodes are placed
closer together than non-adjacent nodes. A third dimension reects timing data as a dotted vertical
bar at each node; the height is proportional to the amount of time. VISVIP also provides animation
facilities for visualizing path traversal. Since WebVIP logs reect actual task completion, prior
statistical analysis is not necessary for VISVIP usage.

Usability Testing Methods: Automated Analysis { Discussion

Table 2.6 summarizes log �le analysis methods discussed in this section. Although the
techniques vary widely on the four assessment criteria (e�ectiveness, ease of use, ease of learning,
and applicability), all approaches o�er substantial bene�ts over the alternative { time-consuming,
unaided analysis of potentially large amounts of raw data. Hybrid task-based pattern-matching
techniques like USINE may be the most e�ective (i.e., provide clear insight for improving usability
via task analysis), but they require additional e�ort and learning time over simpler pattern-matching
approaches; this additional e�ort is mainly in the development of task models. Although pattern-
matching approaches are easier to use and learn, they only detect problems for pre-speci�ed usage
patterns.

Metric-based approaches in the WIMP domain have been e�ective at associating mea-
surements with speci�c interface aspects, such as commands and tasks, which can then be used
to identify usability problems. AMME also helps the evaluator to understand the user's problem
solving process and conduct simulation studies. However, metric-based approaches require the
evaluator to conduct more analysis to ascertain the source of usability problems than task-based
approaches. Metric-based techniques in the Web domain focus on server and network performance,
which provides little usability insight. Similarly, inferential analysis of Web server logs is limited
by their accuracy and may provide inconclusive usability information.

Most of the techniques surveyed in this section could be applied to WIMP and Web UIs
other than those demonstrated on, with the exception of the MIKE UIMS and UsAGE, which
require a WIMP UI to be developed within a special environment. AMME could be employed for
both Web and WIMP UIs, provided log �les and system models are available.
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Figure 2.5: Dome Tree visualization [Chi et al. 2000] of a Web site with a usage path displayed as a series
of connected lines across the left side. The bottom part of the �gure displays information about the usage
path, including an estimated navigation time and information scent (i.e., common keywords along the path).
Reprinted with permission of the authors.
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Figure 2.6: VISVIP visualization [Cugini and Scholtz 1999] of a Web site (top part). The bottom part of
the �gure displays a usage path (series of directed lines on the left site) laid over the site. Reprinted with
permission of the authors.
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2.6 Inspection Methods

A usability inspection is an evaluation methodology whereby an evaluator examines the
usability aspects of a UI design with respect to its conformance to a set of guidelines. Guidelines can
range from highly speci�c prescriptions to broad principles. Unlike other UE methods, inspections
rely solely on the evaluator's judgment. A large number of detailed usability guidelines have been
developed for WIMP interfaces [Open Software Foundation 1991; Smith and Mosier 1986] and
Web interfaces [Comber 1995; Detweiler and Omanson 1996; Levine 1996; Lynch and Horton 1999;
Web Accessibility Initiative 1999]. Common non-automated inspection techniques are heuristic
evaluation [Nielsen 1993] and cognitive walkthroughs [Lewis et al. 1990].

Designers have historically experienced diÆculties following design guidelines
[Borges et al. 1996; de Souza and Bevan 1990; Lowgren and Nordqvist 1992; Smith 1986]. One
study has demonstrated that designers are biased towards aesthetically pleasing interfaces, re-
gardless of eÆciency [Sears 1995]. Because designers have diÆculty applying design guidelines,
automation has been predominately used within the inspection class to objectively check guideline
conformance. Software tools assist evaluators with guideline review by automatically detecting and
reporting usability violations and in some cases making suggestions for �xing them [Balbo 1995;
Farenc and Palanque 1999]. Automated capture, analysis, and critique support is available for the
guideline review and cognitive walkthrough method types, as described in the remainder of this
section.

2.6.1 Inspection Methods: Non-automated

Nine inspection method types were surveyed; they vary based on the goals of the inspection
(e.g., guideline and standard conformance), the evaluative criteria (e.g., guidelines and standards),
the evaluative process (e.g., formal or informal, task-based, or self-guided exploration), and how
judgment is derived (e.g., individually or as a group). The fundamental goal of all inspection
methods is to �nd usability problems in an existing interface design and then use these problems
to make recommendations for improving the usability of an interface. Each inspection method has
more speci�c objectives that aide in choosing the most appropriate method. For example, if the
goal of a usability evaluation is to determine an interface's conformance to established guidelines,
then the evaluator would use the guideline review method.

The nine inspection method types also di�er in usability from the evaluator's perspective
(i.e., how easy it is to learn and apply a method). Heuristic and perspective-based evaluations are
considered to be easy to learn and apply, while cognitive walkthrough is not as easy to learn or
apply [Nielsen and Mack 1994; Zhang et al. 1998]. Studies have also shown that the simpler the
technique, the more e�ective the method is for identifying usability problems [Nielsen and Mack
1994]. For example, several studies have contrasted heuristic evaluation and cognitive walkthrough
and reported heuristic evaluation to be more e�ective [Nielsen and Mack 1994].

In most cases, the method type is the same as the method. All of the methods require
formal or informal interface usage and have been applied or could be applied to both WIMP
and Web UIs. Unless otherwise speci�ed, most discussions below are based on [Dix et al. 1998;
Hom 1998; Human Factors Engineering 1999b; Nielsen 1993; Nielsen and Mack 1994; Shneiderman
1998].

Guideline Review. In guideline reviews evaluators check a WIMP interface for conformance with
a comprehensive and sometimes large number (e.g., 1000 or more) of established usability
guidelines. There are several accepted guidelines, including the Smith and Mosier guidelines
[Smith and Mosier 1986] and the Motif style guides [Open Software Foundation 1991].
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Guideline review is also actively used to evaluate Web interfaces. Many corporations have
developed their own guidelines and there have been several e�orts to develop a standard set
of guidelines. Keevil [1998] presents a set of guidelines as a list of yes/no questions about
the organization, user-oriented tasks, and technical content of a Web site. After answering
these questions in a spreadsheet or Web form, a usability index can be computed for a site.
Amb�uhler and Lindenmeyer [1999] use guidelines to compute accessibility measurements (i.e.,
how easy is it to access a page without special hardware or software). Lohse and Spiller [1998]
use regression modeling on a set of 32 guidelines to predict store traÆc and dollar sales as
a function of interface features, such as the number of links into the store and number of
products. Finally, Rossi et al. [1999] propose guidelines to assist designers with determining
the best navigation structure for a site. Currently, all of these approaches require manual
evaluation.

Ratner et al. [1996] question the validity of HTML usability guidelines, since most HTML
guidelines have not been subjected to a rigorous development process as established guidelines
for WIMP interfaces. Analysis of 21 HTML guidelines showed little consistency among them,
with 75% of recommendations appearing in only one style guide. Furthermore, only 20% of
HTML-relevant recommendations from established WIMP guidelines existed in the 21 HTML
style guides.

Cognitive Walkthrough. Cognitive walkthrough involves one or more evaluators exploring an
interface, prototype, or paper mock-up by going through a pre-determined set of tasks and
assessing the understandability and ease of learning for each task. During the walkthrough of
a task, the evaluator(s) attempts to simulate a user's problem-solving process while examining
each action required. The evaluator attempts to construct a credible success story for each
step of the task. Otherwise, the evaluator constructs a detailed failure story.

Cognitive walkthroughs require intensive documentation e�ort. A modi�ed version, cognitive
jogthrough [Rowley and Rhoades 1992], was developed to expedite recording the walkthrough
session. In cognitive jogthrough, the session is videotaped and logging software is used to
mark key events. Thus, the videotape can be reviewed afterwards to document the session.

Pluralistic Walkthrough. This is a variation of the cognitive walkthrough inspection method
wherein representative users, evaluators, and developers inspect the interface as a group. The
goal of this method is to step through usage scenarios and discuss usability issues that arise
in the scenario steps.

Heuristic Evaluation. In heuristic evaluation one or more evaluators independently evaluate an
interface using a list of heuristics. The outcome of this evaluation is typically a list of possible
usability problems. After the evaluators independently evaluate the interface, the evaluators
aggregate their �ndings and associate severity ratings with each potential usability problem.
Heuristic evaluation is the most informal inspection method [Nielsen and Mack 1994], mainly
because it relies on a small set of usability criteria. It is also one of the main discount (i.e.,
cheap, fast, and easy to use) usability methods employed [Nielsen and Mack 1994].

Perspective-based Inspection. Perspective-based inspection [Zhang et al. 1998] is a variation of
heuristic evaluation. For this method, evaluators divide a list of usability issues into di�erent
perspectives and focus on only one perspective or subset of heuristics during an inspection
session. A perspective is a point of view consisting of a list of inspection questions and a
speci�c procedure for conducting the inspection. Zhang et al. [1998] have shown that this
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Method Class: Inspection
Automation Type: Capture

Method Type: Cognitive Walkthrough - expert simulates user's problem
solving (1 method)

UE Method UI E�ort
Software assists the expert with documenting a cognitive WIMP F
walkthrough

Table 2.7: Synopsis of automated capture support for inspection methods.

approach improves the e�ectiveness of evaluators within each perspective as well as overall,
in comparison to heuristic evaluation.

Feature Inspection. The purpose of this evaluation method is to inspect a feature set of a product
and to analyze the availability, understandability, and other functionality aspects for each
feature. Evaluators use a list of product features along with scenarios for such inspections.
The documentation sta� usually conducts feature inspections.

Formal Usability Inspection. Formal usability inspection is an adaptation of traditional soft-
ware inspection to usability evaluation. The inspection procedure is fairly similar to heuristic
evaluation and involves a diverse team of inspectors (e.g., developers, designers, documenters,
trainers, technical support personnel, and possibly usability experts). The only di�erence is
the formality associated with the inspection (i.e., assigned roles and a formal six-step process
to follow).

Consistency Inspection. Evaluators use this method to determine a consistent interface appear-
ance and functionality that they can then use to assess the consistency of interfaces across
multiple products in a family.

Standards Inspection. In this inspection method an evaluator compares components of an inter-
face to a list of industry standards to assess the interface's compliance with these standards.
This inspection method is usually aimed at ensuring a product's market conformance.

2.6.2 Inspection Methods: Automated Capture

Table 2.7 summarizes capture support for inspection methods { namely, a system devel-
oped to assist an evaluator with a cognitive walkthrough. During a cognitive walkthrough, an
evaluator attempts to simulate a user's problem-solving process while examining UI tasks. At each
step of a task, the evaluator assesses whether a user would succeed or fail to complete the step.
Hence, the evaluator produces extensive documentation during this analysis. There was an early
attempt to \automate" cognitive walkthroughs by prompting evaluators with walkthrough ques-
tions and enabling evaluators to record their analyses in HyperCard. Unfortunately, evaluators
found this approach too cumbersome and time-consuming to employ [Rieman et al. 1991].

2.6.3 Inspection Methods: Automated Analysis

Table 2.8 provides a synopsis of automated analysis methods for inspection-based usability
evaluation, discussed in detail in the remainder of this section. All of the methods require minimal
e�ort to employ; this is denoted with a blank entry in the e�ort column. Support available for
WIMP and Web UIs is discussed separately.
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Method Class: Inspection
Automation Type: Analysis

Method Type: Guideline Review - expert checks guideline conformance
(8 methods)

UE Method UI E�ort
Use quantitative screen measures for analysis (AIDE, WIMP
[Parush et al. 1998])
Analyze terminology and consistency of UI elements (Sherlock) WIMP
Analyze the structure of Web pages (Rating Game, HyperAT, Web
Gentler)
Use guidelines for analysis (WebSAT) Web
Analyze the scanning path of a Web page (Design Advisor) Web

Table 2.8: Synopsis of automated analysis support for inspection methods.

Inspection Methods: Automated Analysis { WIMP UIs

Several quantitative measures have been proposed for evaluating interfaces. Tullis [1983]
derived size measures (Overall Density, Local Density, Number of Groups, Size of Groups, Number
of Items, and Layout Complexity). [Streveler and Wasserman 1984] proposed \boxing," \hot-
spot," and \alignment" analysis techniques. These early techniques were designed for alphanumeric
displays, while more recent techniques evaluate WIMP interfaces. Vanderdonckt and Gillo [1994]
proposed �ve visual techniques (Physical Composition, Association and Dissociation, Ordering, and
Photographic Techniques), which identi�ed more visual design properties than traditional balance,
symmetry and alignment measures. Rauterberg [1996a] proposed and validated four measures
(Functional Feedback, Interactive Directness, Application Flexibility, and Dialog Flexibility) to
evaluate WIMP UIs. Quantitative measures have been incorporated into automated layout tools
[Bodart et al. 1994; Kim and Foley 1993] as well as several automated analysis tools [Mahajan and
Shneiderman 1997; Parush et al. 1998; Sears 1995], discussed immediately below.

Parush et al. [1998] developed and validated a tool for computing the complexity of dialog
boxes implemented with Microsoft Visual Basic. The tool considers changes in the size of screen
elements, the alignment and grouping of elements, as well as the utilization of screen space in its
calculations. Usability studies demonstrated that tool results can be used to decrease screen search
time and ultimately to improve screen layout. AIDE (semi-Automated Interface Designer and
Evaluator) [Sears 1995] is a more advanced tool that helps designers assess and compare di�erent
design options using quantitative task-sensitive and task-independent metrics, including eÆciency
(i.e., distance of cursor movement), vertical and horizontal alignment of elements, horizontal and
vertical balance, and designer-speci�ed constraints (e.g., position of elements). AIDE also employs
an optimization algorithm to automatically generate initial UI layouts. Studies with AIDE showed
it to provide valuable support for analyzing the eÆciency of a UI and incorporating task information
into designs.

Sherlock [Mahajan and Shneiderman 1997] is another automated analysis tool for Windows
interfaces. Rather than assessing ergonomic factors, it focuses on task-independent consistency
checking (e.g., same widget placement and labels) within the UI or across multiple UIs; user studies
have shown a 10{25% speedup for consistent interfaces [Mahajan and Shneiderman 1997]. Sherlock
evaluates visual properties of dialog boxes, terminology (e.g., identify confusing terms and check
spelling), as well as button sizes and labels. Sherlock evaluates any Windows UI that has been
translated into a special canonical format �le; this �le contains GUI object descriptions. Currently,



34

there are translators for Microsoft Visual Basic and Microsoft Visual C++ resource �les.

Inspection Methods: Automated Analysis { Web UIs

The Rating Game [Stein 1997] is an automated analysis tool that attempts to measure
the quality of a set of Web pages using a set of easily measurable features. These include: an
information feature (word to link ratio), a graphics feature (number of graphics on a page), a
gadgets feature (number of applets, controls, and scripts on a page), and so on. The tool reports
these raw measures without providing guidance for improving a Web page.

Two authoring tools from Middlesex University, HyperAT [Theng and Marsden 1998] and
Gentler [Thimbleby 1997], perform a similar structural analysis at the site level. The goal of the
Hypertext Authoring Tool (HyperAT) is to support the creation of well-structured hyperdocuments.
It provides a structural analysis which focuses on verifying that the breadths and depths within
a page and at the site level fall within thresholds (e.g., depth less than three levels). (HyperAT
also supports inferential analysis of server log �les similarly to other log �le analysis techniques;
see Section 2.5.3.) Gentler [Thimbleby 1997] provides similar structural analysis but focuses on
maintenance of existing sites rather than design of new ones.

The Web Static Analyzer Tool (SAT) [Scholtz and Laskowski 1998], part of the NIST
WebMetrics suite of tools, assesses static HTML according to a number of usability guidelines,
such as whether all graphics contain ALT tags, the average number of words in link text, and the
existence of at least one outgoing link on a page. Currently, WebSAT only processes individual
pages and does not suggest improvements [Chak 2000]. Future plans for this tool include adding
the ability to inspect the entire site more holistically to identify potential problems in interactions
between pages.

Unlike other analysis approaches, the Design Advisor [Faraday 2000] enables visual anal-
ysis of Web pages. The tool uses empirical results from eye tracking studies designed to assess the
attentional e�ects of various elements, such as animation, images, and highlighting, in multimedia
presentations [Faraday and Sutcli�e 1998]; these studies found motion, size, images, color, text
style, and position to be scanned in this order. The Design Advisor determines and superimposes
a scanning path on a Web page where page elements are numbered to indicate the order in which
elements will be scanned. It currently does not provide suggestions for improving scanning paths.

Inspection Methods: Automated Analysis { Discussion

Table 2.8 summarizes automated analysis methods discussed in this section. All of the
WIMP approaches are highly e�ective at checking for guidelines that can be operationalized. These
include computing quantitative measures (e.g., the size of screen elements, screen space usage, and
eÆciency) and checking consistency (e.g., same widget size and placement across screens). All of
the tools have also been empirically validated. However, the tools cannot assess UI aspects that
cannot be operationalized, such as whether the labels used on elements will be understood by users.
For example, [Farenc et al. 1999] show that only 78% of a set of established ergonomic guidelines
could be operationalized in the best case scenario and only 44% in the worst case. All methods
also su�er from limited applicability (interfaces developed with Microsoft Visual Basic or Microsoft
Visual C). The tools appear to be straight forward to learn and use, provided the UI is developed
in the appropriate environment.

The Rating Game, HyperAT, and Gentler compute and report a number of statistics about
a page (e.g., number of links, graphics, and words). However, the e�ectiveness of these structural
analyses is questionable, since the thresholds have not been empirically validated. Although there
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Method Class: Inspection
Automation Type: Critique

Method Type: Guideline Review - expert checks guideline conformance
(11 methods)

UE Method UI E�ort
Use guidelines for critiquing (KRI/AG, IDA, CHIMES, Ergoval) WIMP
Use guidelines for critiquing and modifying a UI (SYNOP) WIMP M
Check HTML syntax (Weblint, Dr. Watson) Web
Use guidelines for critiquing (Lift Online, Lift Onsite, Web
Bobby, WebEval)

Table 2.9: Synopsis of automated critique support for inspection methods.

have been some investigations into breadth and depth tradeo�s for the Web [Larson and Czer-
winski 1998; Zaphiris and Mtei 1997], general thresholds still remain to be established. Although
WebSAT helps designers adhere to good coding practices, these practices have not been shown
to improve usability. There may be some indirect support for these methods through research
aimed at identifying aspects that a�ect Web site credibility [Fogg et al. 2001; Kim and Fogg 1999;
Fogg et al. 2000], since credibility a�ects usability and vice versa. A survey of over 1,400 Web
users as well as an empirical study indicated that typographical errors, ads, broken links, and other
aspects impact credibility; some of these aspects can be detected by automated UE tools, such as
WebSAT. All of these approaches are easy to use, learn, and apply to all Web UIs.

The visual analysis supported by the Design Advisor could help designers improve Web
page scanning. It requires a special Web browser for use, but is easy to use, learn, and apply
to basic Web pages (i.e., pages that don't use scripts, applets, Macromedia Flash, or other non-
HTML technology). Heuristics employed by this tool were developed based on empirical results
from eye tracking studies of multimedia presentations, but have not been empirically validated for
Web pages.

2.6.4 Inspection Methods: Automated Critique

Critique systems give designers clear directions for conforming to violated guidelines and
consequently improving usability. As mentioned above, following guidelines is diÆcult, especially
when there is a large number of guidelines to consider. Automated critique approaches, especially
ones that modify a UI [Balbo 1995], provide the highest level of support for adhering to guidelines.

Table 2.9 provides a synopsis of automated critique methods discussed in the remainder
of this section. All but one method, SYNOP, require minimal e�ort to employ; this is denoted
with a blank entry in the e�ort column. Support available for WIMP and Web UIs is discussed
separately.

Inspection Methods: Automated Critique { WIMP UIs

The KRI/AG tool (Knowledge-based Review of user Interface) [Lowgren and Nordqvist
1992] is an automated critique system that checks the guideline conformance of X Window inter-
face designs created using the TeleUSE UIMS [Lee 1997]. KRI/AG contains a knowledge base of
guidelines and style guides, including the Smith and Mosier guidelines [Smith and Mosier 1986]
and the Motif style guides [Open Software Foundation 1991]. It uses this information to automat-
ically critique a UI design and generate comments about possible aws in the design. IDA (user
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Interface Design Assistance) [Reiterer 1994] also embeds rule-based (i.e., expert system) guideline
checks within a UIMS. SYNOP [Balbo 1995] is a similar automated critique system that performs
a rule-based critique of a control system application. SYNOP also modi�es the UI model based
on its evaluation. CHIMES (Computer-Human Interaction ModElS) [Jiang et al. 1993] assesses
the degree to which NASA's space-related critical and high risk interfaces meet human factors
standards.

Unlike KRI/AG, IDA, SYNOP, and CHIMES, Ergoval [Farenc and Palanque 1999] is
widely applicable to WIMP UIs on Windows platforms. It organizes guidelines into an object-
based framework (i.e., guidelines that are relevant to each graphical object) to bridge the gap
between the developer's view of an interface and how guidelines are traditionally presented (i.e.,
checklists). This approach is being incorporated into a petri net environment [Palanque et al. 1999]
to enable guideline checks throughout the development process.

Inspection Methods: Automated Critique { Web UIs

Several automated critique tools use guidelines for Web site usability checks. The World
Wide Web Consortium's HTML Validation Service [World Wide Web Consortium 2000] checks that
HTML code conforms to standards. Weblint [Bowers 1996] and Dr. Watson [Addy & Associates
2000] also check HTML syntax and in addition verify links. Dr. Watson also computes download
speed and spell checks text.

UsableNet's LIFT Online and LIFT Onsite [Usable Net 2000] perform usability checks
similarly to WebSAT (discussed in Section 2.6.3) as well as checking for use of standard and
portable link, text, and background colors, the existence of stretched images, and other guideline
violations. LIFT Online suggests improvements, while LIFT Onsite guides users through making
suggested improvements. According to [Chak 2000], these two tools provide valuable guidance for
improving Web sites. Bobby [Clark and Dardailler 1999; Cooper 1999] is another HTML analysis
tool that checks Web pages for their accessibility [Web Accessibility Initiative 1999] to people with
disabilities.

Conforming to the guidelines embedded in these tools can potentially eliminate usability
problems that arise due to poor HTML syntax (e.g., missing page elements) or guideline violations.
As previously discussed, research on Web site credibility [Fogg et al. 2001; Kim and Fogg 1999;
Fogg et al. 2000] possibly suggests that some of the aspects assessed by these tools, such as broken
links and other errors, may also a�ect usability due to the relationship between usability and
credibility. However, [Ratner et al. 1996] question the validity of HTML usability guidelines, since
most have not been subjected to a rigorous development process as established guidelines for
WIMP interfaces. Analysis of 21 HTML guidelines showed little consistency among them, with
75% of recommendations appearing in only one style guide. Furthermore, only 20% of HTML-
relevant recommendations from established WIMP guidelines existed in the 21 HTML style guides.
WebEval [Scapin et al. 2000] is one automated critique approach being developed to address this
issue. Similarly to Ergoval (discussed above), it provides a framework for applying established
WIMP guidelines to relevant HTML components. Even with WebEval, some problems, such as
whether text will be understood by users, are diÆcult to detect automatically.

Inspection Methods: Automated Critique { Discussion

Table 2.9 summarizes automated critique methods discussed in this section. All of the
WIMP approaches are highly e�ective at suggesting UI improvements for those guidelines that can
be operationalized. These include checking for the existence of labels for text �elds, listing menu
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options in alphabetical order, and setting default values for input �elds. However, they cannot
assess UI aspects that cannot be operationalized, such as whether the labels used on elements will
be understood by users. As previously discussed, [Farenc et al. 1999] show that only 78% of a set
of established ergonomic guidelines could be operationalized in the best case scenario and only 44%
in the worst case. Another drawback of approaches that are not embedded within a UIMS (e.g.,
SYNOP) is that they require considerable modeling and learning e�ort on the part of the evaluator.
All methods, except Ergoval, also su�er from limited applicability.

As previously discussed, conforming to the guidelines embedded in HTML analysis tools
can potentially eliminate usability problems that arise due to poor HTML syntax (e.g., missing
page elements) or guideline violations. However, [Ratner et al. 1996] question the validity of
HTML usability guidelines, since most have not been subjected to a rigorous development process
as established guidelines for WIMP interfaces and have little consistency among them. Brajnik
[2000] surveyed eleven automated Web site analysis methods, including Bobby and Lift Online.
The author's survey revealed that these tools address only a sparse set of usability features, such as
download time, presence of alternative text for images, and validation of HTML and links. Other
usability aspects, such as consistency and information organization are unaddressed by existing
tools.

All of the Web critique tools are applicable to basic HTML pages and appear to be easy
to use and learn. They also enable ongoing assessment, which can be extremely bene�cial after
making changes.

2.7 Inquiry Methods

Similarly to usability testing approaches, inquiry methods require feedback from users and
are often employed during usability testing. However, the focus is not on studying speci�c tasks or
measuring performance. Rather the goal of these methods is to gather subjective impressions (i.e.,
preferences or opinions) about various aspects of a UI. Evaluators also use inquiry methods, such
as surveys, questionnaires, and interviews, to gather supplementary data after a system is released;
this is useful for improving the interface for future releases. In addition, evaluators use inquiry
methods for needs assessment early in the design process.

Inquiry methods vary based on whether the evaluator interacts with a user or a group
of users or whether users report their experiences using questionnaires or usage logs, possibly in
conjunction with screen snapshots. Automation has been used predominately to capture subjective
impressions during formal or informal interface use.

2.7.1 Inquiry Methods: Non-automated

This section provides a synopsis of non-automated inquiry method types. The method
type and method are the same in all cases. All of the methods require formal or informal interface
use. In addition, all of the methods have been or could be applied to WIMP and Web UIs. Unless
otherwise speci�ed, most discussions are based on [Dix et al. 1998; Hom 1998; Human Factors
Engineering 1999b; Nielsen 1993; Shneiderman 1998].

Contextual Inquiry. Contextual inquiry is a structured �eld interviewing method based on three
core principles: 1. understanding the context in which a product is used is essential for its
successful design; 2. the user is a partner in the design process; and 3. the usability design
process must have a focus. Given these guiding principles, an evaluator attempts to discover
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users' needs through on-site free-ow interviewing. A contextual inquiry is usually a long-
term study possibly lasting a year or more. It is usually conducted in the early stages of
system development.

Field Observation. Field observation is similar to, but less structured than contextual inquiry.
Furthermore, a �eld observation is typically conducted for a released system. For this method,
evaluators visit the representative users' workplace and observe them working with the system.
This enables the evaluator to understand how users are using the system to accomplish their
tasks as well as the mental model the users have of the system. During this visit, the evaluator
may also interview users about their jobs and other aspects about the way they use the
product. Furthermore, evaluators may collect artifacts. This method is also described as an
ethnographic study.

Focus Groups. A focus group is a meeting of about six to nine users wherein users discuss issues
relating to the system. The evaluator plays the role of the moderator (i.e., asks about pre-
determined issues) and gathers the needed information from the discussion. This is valuable
for improving the usability of future releases.

Interviews. An interview is essentially a discussion session between a single user and an inter-
viewer. During an interview, an evaluator asks a user a series of questions about system
issues to guide the discussion. The evaluator can use either an unstructured or structured
interviewing method. In unstructured interviewing there is no well-de�ned agenda, and the
objective is to obtain information on procedures adopted by the user and the user's expec-
tations of the system. Structured interviewing has a speci�c, pre-determined agenda with
speci�c questions to guide and direct the interview. Unstructured interviewing is more of a
conversation, while structured interviewing is more of an interrogation.

Surveys. During a survey, an evaluator asks a user pre-determined questions and records re-
sponses. However, surveys are not as formal or structured as interviews.

Questionnaires. A questionnaire is a measurement tool designed to assess a user's subjective
satisfaction with an interface. It is a list of questions that are distributed to users for responses.
Responses on a questionnaire are usually quantitative (e.g., ratings on a 5-point scale). One
example questionnaire is the Questionnaire for User Interaction Satisfaction (QUIS) [Harper
and Norman 1993; Human Factors Engineering 1999b]. QUIS contains questions to rate 27
system attributes on a 10-point scale, including overall system satisfaction, screen visibility,
terminology, system information, learning factors, and system capabilities.

Self-reporting Logs. Self-reporting logs is a paper-and-pencil form of logging wherein users write
down their actions, observations, and comments on a system and then send them to the
evaluator. This method is most appropriate in early stages of development.

Screen Snapshots. Screen snapshots are usually captured by a participant in conjunction with
other journaling methods, such as self-reporting logs. Basically, participants take screen
snapshots at various times during execution of pre-determined tasks.

User Feedback. User feedback is a means for users to give comments on the system as necessary
or at their convenience. For some systems, it may be possible to make a feedback button or
command accessible within the interface. It is also possible to allow users to submit feedback
via electronic mail, bulletin boards, or Web sites.
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Method Class: Inquiry
Automation Type: Capture

Method Type: Questionnaires - user provides answers to speci�c questions
(2 methods)

UE Method UI E�ort
Questionnaire embedded within the UI (UPM) WIMP IF
HTML forms-based questionnaires (e.g., WAMMI, WIMP, Web IF
QUIS, SUMI, or NetRaker)

Table 2.10: Synopsis of automated capture support for inquiry methods.

2.7.2 Inquiry Methods: Automated Capture

Table 2.10 provides a synopsis of capture methods developed to assist users with com-
pleting questionnaires. Software tools enable the evaluator to collect subjective usability data and
possibly make improvements throughout the life of an interface. Questionnaires can be embedded
within a WIMP UI to facilitate the response capture process. Typically dialog boxes prompt users
for subjective input and process responses (e.g., save data to a �le or email data to the evaluator).
For example, UPM (the User Partnering Module) [Abelow 1993] uses event-driven triggers (e.g.,
errors or speci�c command invocations) to ask users speci�c questions about their interface usage.
This approach allows the evaluator to capture user reactions while they are still fresh.

The Web inherently facilitates the capture of questionnaire data using forms. Users are
typically presented with an HTML page for entering data, and a program on the Web server (e.g.,
a CGI script) processes responses. Several validated questionnaires are available in Web format,
including QUIS (Questionnaire for User Interaction Satisfaction) [Harper and Norman 1993] and
SUMI (Software Usability Measurement Inventory) [Porteous et al. 1993] for WIMP interfaces and
WAMMI (Website Analysis and MeasureMent Inventory) [Kirakowski and Claridge 1998] for Web
interfaces. NetRaker's [NetRaker 2000] usability research tools enable evaluators to create custom
HTML questionnaires and usability tests via a template interface and to view a graphical summary
of results even while studies are in progress. NetRaker's tools include the NetRaker Index (a short
usability questionnaire) for continuously gathering feedback from users about a Web site. Chak
[2000] reports that NetRaker's tools are highly e�ective for gathering direct user feedback, but
points out the need to address potential irritations caused by the NetRaker Index's pop-up survey
window.

As previously discussed, automated capture methods represent an important �rst step
toward informing UI improvements. Automation support for inquiry methods makes it possible to
collect data quickly from a larger number of users than is typically possible without automation.
However, these methods su�er from the same limitation of non-automated approaches { they may
not clearly indicate usability problems due to the subjective nature of user responses. Furthermore,
they do not support automated analysis or critique of interfaces. The real value of these techniques
is that they are easy to use and widely applicable.

2.8 Analytical Modeling Methods

Analytical modeling complements traditional evaluation techniques like usability testing.
Given some representation or model of the UI and/or the user, these methods enable the evaluator
to inexpensively predict usability. A wide range of modeling techniques have been developed, and
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they support di�erent types of analyses. de Haan et al. [1992] classify modeling approaches into
the following four categories:

� Models for task environment analysis: enable the evaluator to assess the mapping
between the user's goals and UI tasks (i.e., how the user accomplishes these goals within the
UI). ETIT (External Internal Task Mapping) [Moran 1983] is one example for evaluating the
functionality, learnability, and consistency of the UI;

� Models to analyze user knowledge: enable the evaluator to use formal grammars to rep-
resent and assess knowledge required for interface use. AL (Action Language) [Reisner 1984]
and TAG (Task-Action Grammar) [Payne and Green 1986] allow the evaluator to compare
alternative designs and predict di�erences in learnability;

� Models of user performance: enable the evaluator to predict user behavior, mainly task
completion time. GOMS analysis (Goals, Operators, Methods, and Selection rules) [John and
Kieras 1996], CTA (Cognitive Task Analysis) [May and Barnard 1994], and (Programmmable
User Models) PUM [Young et al. 1989] { support performance prediction; and

� Models of the user interface: enable the evaluator to represent the UI design at multiple
levels of abstraction (e.g., syntactic and semantic levels) and assess this representation. CLG
(Command Language Grammar) [Moran 1981] and ETAG (Extended Task-Action Grammar)
[Tauber 1990] are two methods for representing and inspecting designs.

Models that focus on user performance, such as GOMS analysis, typically support quan-
titative analysis. The other approaches typically entail qualitative analysis and in some cases, such
as TAG, support quantitative analysis as well. The survey only revealed automation support for
methods that focus on user performance, including GOMS analysis, CTA, and PUM; this is most
likely because performance prediction methods support quantitative analysis, which is easier to
automate.

Automation has been predominately used to analyze task completion (e.g., execution and
learning time) within WIMP UIs. Analytical modeling inherently supports automated analysis.
The survey did not reveal analytical modeling techniques to support automated critique. Most
analytical modeling and simulation approaches are based on the model human processor (MHP)
proposed by Card et al. [1983]. GOMS analysis (Goals, Operators, Methods, and Selection Rules) is
one of the most widely accepted analytical modeling methods based on the MHP [John and Kieras
1996]. Other methods based on the MHP employ simulation and will be discussed in Section 2.9.

2.8.1 Analytical Modeling Methods: Non-automated

This section provides a synopsis of non-automated modeling method types. Method types
and methods are the same in all cases. All of the methods require model development and have
only been employed for WIMP interfaces.

GOMS Analysis. The GOMS family of analytical modeling methods use a task structure con-
sisting of Goals, Operators, Methods and Selection rules. Using this task structure along with
validated time parameters for each operator, the methods enable predictions of task execu-
tion and learning times, typically for error-free expert performance. The four approaches in
this family include the original GOMS method proposed by Card, Moran, and Newell (CMN-
GOMS) [Card et al. 1983], the simpler keystroke-level model (KLM), the natural GOMS
language (NGOMSL), and the critical path method (CPM-GOMS) [John and Kieras 1996].
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These approaches di�er in the task granularity modeled (e.g., keystrokes versus a high-level
procedure), the support for alternative task completion methods, and the support for single
goals versus multiple simultaneous goals.

Task-Environment Analysis. ETIT (External Internal Task Mapping) [Moran 1983] is an ex-
ample method for studying the relationship between tasks completed in the user's domain
and the mapping of these tasks into UI tasks. Terminology used for speci�c objects (e.g.,
character, word, or sentence) and operators on these objects (e.g., copy, split, or join) are
�rst enumerated for each domain; then, mappings between the domains are determined. Es-
tablishing such a mapping enables the evaluator to make inferences about the functionality,
learnability, and consistency of the UI. In addition, this method can be used for assessing the
degree of knowledge transfer between alternative designs.

Knowledge Analysis. Knowledge analysis methods, such as AL (Action Language) [Reisner
1984] and TAG (Task-Action Grammar) [Payne and Green 1986], provide a formal gram-
mar for representing and assessing knowledge required for converting speci�c user tasks into
UI tasks. Both of these techniques assess usability by counting the number and depth of
rules, but di�er with respect to the formal grammar employed. AL uses a well-known nota-
tion for expressing computer science programming languages { Backus-Naur Form [Backus
et al. 1964]. TAG uses a more sophisticated grammar, which produces more compact repre-
sentations of rules. Measures computed from AL and TAG task representations can be used
to compare alternative designs and to predict di�erences in learnability.

Design Analysis. Design analysis methods, such as CLG (Command Language Grammar) [Moran
1981] and ETAG (Extended Task-Action Grammar) [Tauber 1990], enable the evaluator to
represent the UI design at multiple levels of abstraction (e.g., syntactic and semantic levels)
and assess this representation. These methods are typically used for design speci�cation prior
to UI implementation. ETAG is a re�nement of CLG that supports additional levels of anal-
ysis, such as specifying the syntax. ETAG has also been used for modeling user performance
and knowledge.

2.8.2 Analytical Modeling Methods: Automated Analysis

Table 2.11 provides a synopsis of automated analysis methods discussed in the remainder
of this section. The survey did not reveal analytical modeling methods for evaluating Web UIs.

Analytical Modeling Methods: Automated Analysis { WIMP UIs

Two of the major roadblocks to using GOMS have been the tedious task analysis and
the need to calculate execution and learning times [Baumeister et al. 2000; Byrne et al. 1994;
Hudson et al. 1999; Kieras et al. 1995]. These were originally speci�ed and calculated manually
or with generic tools such as spreadsheets. In some cases, evaluators implemented GOMS models
in computational cognitive architectures, such as Soar or EPIC (discussed in Section 2.9). This
approach actually added complexity and time to the analysis [Baumeister et al. 2000]. QGOMS
(Quick and dirty GOMS) [Beard et al. 1996] and CATHCI (Cognitive Analysis Tool for Human
Computer Interfaces) [Williams 1993] provide support for generating quantitative predictions, but
still require the evaluator to construct GOMS models. Baumeister et al. [2000] studied these
approaches and showed them to be inadequate for GOMS analysis.
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Method Class: Analytical Modeling
Automation Type: Analysis

Method Type: UIDE Analysis - conduct GOMS analysis within a UIDE
(4 methods)

UE Method UI E�ort
Generate predictions for GOMS task models (QGOMS, CATHCI) WIMP M
Generate GOMS task models and predictions (USAGE, WIMP M
CRITIQUE)

Method Type: Cognitive Task Analysis - predict usability problems (1 method)
UE Method UI E�ort
Cognitive Task Analysis (CTA) WIMP M

Method Type: Programmable User Models - write program that acts like a user
(1 method)

UE Method UI E�ort
Programmable User Models (PUM) WIMP M

Table 2.11: Synopsis of automated analysis support for analytical modeling methods.

USAGE5 (the UIDE System for semi-Automated GOMS Evaluation) [Byrne et al. 1994]
and CRITIQUE (the Convenient, Rapid, Interactive Tool for Integrating Quick Usability Evalua-
tions) [Hudson et al. 1999] provide support for automatically generating a GOMS task model and
quantitative predictions for the model. Both of these tools accomplish this within a user interface
development environment (UIDE). GLEAN (GOMS Language Evaluation and ANalysis) [Kieras
et al. 1995] is another tool that generates quantitative predictions for a given GOMS task model
(discussed in more detail in Section 2.9). These tools reduce the e�ort required to employ GOMS
analysis and generate predictions that are consistent with models produced by experts. The major
hindrance to wide application of these tools is that they operate on limited platforms (e.g., Sun
machines), model low-level goals (e.g., at the keystroke level for CRITIQUE), do not support mul-
tiple task completion methods (even though GOMS was designed to support this), and rely on an
idealized expert user model.

Cognitive Task Analysis (CTA) [May and Barnard 1994] uses a di�erent modeling ap-
proach than GOMS analysis. GOMS analysis requires the evaluator to construct a model for each
task to be analyzed. However, CTA requires the evaluator to input an interface description to
an underlying theoretical model for analysis. The theoretical model, an expert system based on
Interacting Cognitive Subsystems (ICS, discussed in Section 2.9), generates predictions about per-
formance and usability problems similarly to a cognitive walkthrough. The system prompts the
evaluator for interface details from which it generates predictions and a report detailing the theo-
retical basis of predictions. The authors refer to this form of analysis as \supportive evaluation."

The Programmable User Model (PUM) [Young et al. 1989] is an entirely di�erent analyt-
ical modeling technique. In this approach, the designer is required to write a program that acts
like a user using the interface; the designer must specify explicit sequences of operations for each
task. Task sequences are then analyzed by an architecture (similar to the CTA expert system)
that imposes approximations of psychological constraints, such as memory limitations. Constraint
violations can be seen as potential usability problems. The designer can alter the interface design
to resolve violations, and ideally improve the implemented UI as well. Once the designer success-
fully programs the architecture (i.e., creates a design that adheres to the psychological constraints),

5This is not to be confused with the UsAGE log �le capture and analysis tool discussed in Section 2.5.



43

the model can then be used to generate quantitative performance predictions similarly to GOMS
analysis. By making a designer aware of considerations and constraints a�ecting usability from the
user's perspective, this approach provides clear insight into speci�c problems with a UI.

Analytical Modeling Methods: Automated Analysis { Discussion

Table 2.11 summarizes automated analysis methods discussed in this section. Analyti-
cal modeling approaches enable the evaluator to produce relatively inexpensive results to inform
design choices. GOMS analysis has been shown to be applicable to all types of WIMP UIs and
is e�ective at predicting usability problems. However, these predictions are limited to error-free
expert performance in many cases although early accounts of GOMS considered error correction
[Card et al. 1983]. The development of USAGE and CRITIQUE has reduced the learning time
and e�ort required to apply GOMS analysis, but they su�er from limitations previously discussed.
Tools based on GOMS may also require empirical studies to determine operator parameters in cases
where these parameters have not been previously validated and documented.

Although CTA is an ideal solution for iterative design, it does not appear to be a fully-
developed methodology. Two demonstration systems have been developed and e�ectively used
by a group of practitioners as well as by a group of graduate students [May and Barnard 1994].
However, some users experienced diÆculty with entering system descriptions, which can be a time
consuming process. After the initial interface speci�cation, subsequent analysis is easier because
the demonstration systems store interface information. The approach appears to be applicable to
all WIMP UIs. It may be possible to apply a more fully developed approach to Web UIs.

PUM is a programming approach, and thus requires considerable e�ort and learning time
to employ. Although it appears that this technique is applicable to all WIMP UIs, its e�ectiveness
is not discussed in detail in the literature.

Analytical modeling of Web UIs lags far behind e�orts for WIMP interfaces. Many Web
authoring tools, such as Microsoft FrontPage and Macromedia
Dreamweaver, provide limited support for usability evaluation in the design phase (e.g., predict
download time and check HTML syntax). This addresses only a small fraction of usability prob-
lems. While analytical modeling techniques are potentially bene�cial, the survey did not uncover
any approaches that address this gap in Web site evaluation. Approaches like GOMS analysis will
not map as well to the Web domain, because it is diÆcult to predict how a user will accomplish the
goals in a task hierarchy given that there are potentially many di�erent ways to navigate a typical
site. Another problem is GOMS' reliance on an expert user model (at least in the automated
approaches), which does not �t the diverse user community of the Web. Hence, new analytical
modeling approaches, such as a variation of CTA, are required to evaluate the usability of Web
sites.

2.9 Simulation Methods

Simulation complements traditional UE methods and inherently supports automated anal-
ysis. Using models of the user and/or the interface design, computer programs simulate the user
interacting with the interface and report the results of this interaction, in the form of performance
measures and interface operations, for instance. Evaluators can run simulators with di�erent pa-
rameters to study various UI design tradeo�s and thus make more informed decisions about UI
implementation. Simulation is also used to automatically generate synthetic usage data for analy-
sis with log �le analysis techniques [Chi et al. 2000] or event playback in a UI [Kasik and George
1996]. Thus, simulation can also be viewed as supporting automated capture to some degree.
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Method Class: Simulation
Automation Type: Capture

Method Type: Genetic Algorithm Modeling - mimic novice user interaction
(1 method)

UE Method UI E�ort
Genetic Algorithm Modeling ([Kasik and George 1996]) WIMP

Method Type: Information Scent Modeling - mimic Web site navigation
(1 method)

UE Method UI E�ort
Information Scent Modeling ([Chi et al. 2000]) Web M

Table 2.12: Synopsis of automated capture support for simulation methods.

2.9.1 Simulation Methods: Automated Capture

Table 2.12 provides a synopsis of the two automated capture methods discussed in this
section. Kasik and George [1996] developed an automated technique for generating and capturing
usage data; this data could then be used for driving tools that replay events (such as executing a
log �le) within Motif-based UIs. The goal of this work is to use a small number of input parameters
to inexpensively generate a large number of usage traces (or test scripts) representing novice users.
The evaluator can then use these traces to �nd weak spots, failures, and other usability problems.

To create novice usage traces, the designer initially produces a trace representing an
expert using the UI; a scripting language is available to produce this trace. The designer can then
insert deviation commands at di�erent points within the expert trace. During trace execution, a
genetic algorithm determines user behavior at deviation points, and in e�ect simulates a novice
user learning by experimentation. Genetic algorithms consider past history in generating future
random numbers; this enables the emulation of user learning. Altering key features of the genetic
algorithm enables the designer to simulate other user models. Although currently not supported by
this tool, traditional random number generation can also be employed to explore the outer limits
of a UI, for example, by simulating completely random behavior.

Chi et al. [2000] developed a similar approach for generating and capturing navigation
paths for Web UIs. This approach creates a model of an existing site that embeds information about
the similarity of content among pages, server log data, and linking structure. The evaluator speci�es
starting points in the site and information needs (i.e., target pages) as input to the simulator. The
simulator models a number of agents (i.e., hypothetical users) traversing the links and content of the
site model. At each page, the model considers information \scent" (i.e., common keywords between
an agent's goal and content on linked pages) in making navigation decisions. Navigation decisions
are controlled probabilistically such that most agents traverse higher-scent links (i.e., closest match
to information goal) and some agents traverse lower-scent links. Simulated agents stop when they
reach the target pages or after an arbitrary amount of e�ort (e.g., maximum number of links or
browsing time). The simulator records navigation paths and reports the proportion of agents that
reached target pages.

The authors use these usage paths as input to the Dome Tree visualization methodology,
an inferential log �le analysis approach discussed in Section 2.5. The authors compared actual and
simulated navigation paths for Xerox's corporate site and discovered a close match when scent is
\clearly visible" (meaning links are not embedded in long text passages or obstructed by images).
Since the site model does not consider actual page elements, the simulator cannot account for the
impact of various page aspects, such as the amount of text or reading complexity, on navigation
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Method Class: Simulation
Automation Type: Analysis

Method Type: Petri Net Modeling - mimic user interaction from usage data
(1 method)

UE Method UI E�ort
Petri Net Modeling (AMME) WIMP IF

Method Type: Information Processor Modeling - mimic user interaction
(9 methods)

UE Method UI E�ort
Employ a computational cognitive architecture for UI analysis WIMP M
(ACT-R, COGNET, EPIC, HOS, Soar, CCT, ICS, GLEAN)
Employ a GOMS-like model to analyze navigation (Site Pro�le) Web M

Table 2.13: Synopsis of automated analysis support for simulation methods.

choices. Hence, this approach may enable only crude approximations of user behavior for sites with
complex pages.

Simulation Methods: Automated Capture { Discussion

Table 2.12 summarizes automated capture methods discussed in this section. Without
these techniques, the evaluator must anticipate all possible usage scenarios or rely on formal or
informal interface use to generate usage traces. Formal and informal use limit UI coverage to a
small number of tasks or to UI features that are employed in regular use. Automated techniques,
such as the genetic algorithm approach, enable the evaluator to produce a larger number of usage
scenarios and widen UI coverage with minimal e�ort.

The system developed by Kasik and George appears to be relatively straightforward to
use, since it interacts directly with a running application and does not require modeling. Interaction
with the running application also ensures that generated usage traces are plausible. Experiments
demonstrated that it is possible to generate a large number of usage traces within an hour. However,
an evaluator must manually analyze the execution of each trace to identify problems. The authors
propose future work to automatically verify that a trace produced the correct result. The evaluator
must also program an expert user trace, which could make the system diÆcult to use and learn.
Currently, this tool is only applicable to Motif-based UIs.

The approach developed by Chi et al. is applicable to all Web UIs. It also appears to be
straightforward to use and learn, since software produces the Web site model automatically. The
evaluator must manually interpret simulation results; however, analysis could be facilitated with
the Dome Tree visualization tool.

2.9.2 Simulation Methods: Automated Analysis

Table 2.13 provides a synopsis of the automated analysis methods discussed in the re-
mainder of this section. Methods for WIMP and Web UIs are considered separately.

Simulation Methods: Automated Analysis { WIMP UIs

AMME [Rauterberg and Aeppili 1995] (see Section 2.5.2) is the only surveyed approach
that constructs a WIMP simulation model (petri net) directly from usage data. Other methods are
based on a model similar to the MHP and require the evaluator to conduct a task analysis (and
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subsequently validate it with empirical data) to develop a simulator. Hence, AMME is more accu-
rate, exible (i.e., task and user independent), and simulates more detail (e.g., error performance
and preferred task sequences). AMME simulates learning, user decisions, and task completion and
outputs a measure of behavior complexity. Studies have shown that the behavior complexity mea-
sure correlates negatively with learning and interface complexity. Studies have also validated the
accuracy of generated models with usage data [Rauterberg 1995]. AMME should be applicable to
Web interfaces as well, since it constructs models from log �les. Despite its advantages, AMME
still requires formal interface use to generate log �les for simulation studies.

The remaining WIMP simulation methods are based on sophisticated computational cog-
nitive architectures { theoretical models of user behavior { similar to the MHP previously discussed.
Unlike analytical modeling approaches, these methods attempt to approximate user behavior as
accurately as possible. For example, the simulator may track the user's memory contents, interface
state, and the user's hand movements during execution. This enables the simulator to report a de-
tailed trace of the simulation run. Some simulation methods, such as CCT [Kieras and Polson 1985]
(discussed below), can also generate predictions statically (i.e., without being executed) similarly
to analytical modeling methods.

Pew and Mavor [Pew and Mavor 1998] provide a detailed discussion of computational cog-
nitive architectures and an overview of many approaches, including �ve discussed below: ACT-R
(Adaptive Control of Thought) [Anderson 1990; Anderson 1993], COGNET (COGnition as a NEt-
work of Tasks) [Zachary et al. 1996], EPIC (Executive-Process Interactive Control) [Kieras et al.
1997], HOS (Human Operator Simulator) [Glenn et al. 1992], and Soar [Laird and Rosenbloom 1996;
Polk and Rosenbloom 1994]. Here, CCT (Cognitive Complexity Theory) [Kieras and Polson 1985],
ICS (Interacting Cognitive Subsystems) [Barnard 1987; Barnard and Teasdale 1991], and GLEAN
(GOMS Language Evaluation and ANalysis) [Kieras et al. 1995] are also considered. Rather than
describe each method individually, Table 2.14 summarizes the major characteristics of these simu-
lation methods as discussed below.

Modeled Tasks. The surveyed models simulate the following three types of tasks: a user perform-
ing cognitive tasks (e.g., problem-solving and learning:
COGNET, ACT-R, Soar, ICS); a user immersed in a human-machine system (e.g., an aircraft
or tank: HOS); and a user interacting with a typical UI (EPIC, GLEAN, CCT).

Modeled Components. Some simulations focus solely on cognitive processing (ACT-R, COGNET)
while others incorporate perceptual and motor processing as well (EPIC, ICS, HOS, Soar,
GLEAN, CCT).

Component Processing. Task execution is modeled either as serial processing (ACT-R, GLEAN,
CCT), parallel processing (EPIC, ICS, Soar), or semi-parallel processing (serial processing
with rapid attention switching among the modeled components, giving the appearance of
parallel processing: COGNET, HOS).

Model Representation. To represent the underlying user or system, simulation methods use
either task hierarchies (as in a GOMS task structure: HOS, CCT), production rules (CCT,
ACT-R, EPIC, Soar, ICS), or declarative/procedural programs (GLEAN, COGNET). CCT
uses both a task hierarchy and production rules to represent the user and system models,
respectively.

Predictions. The surveyed methods return a number of simulation results, including predictions
of task performance (EPIC, CCT, COGNET, GLEAN, HOS, Soar, ACT-R), memory load
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Parameter UE Methods

Modeled Tasks
problem-solving and/or learning COGNET, ACT-R, Soar, ICS
human-machine system HOS
UI interaction EPIC, GLEAN, CCT

Modeled Components
cognition ACT-R, COGNET
perception, cognition & motor EPIC, ICS, HOS, Soar, GLEAN, CCT
Component Processing
serial ACT-R, GLEAN, CCT
semi-parallel COGNET, HOS
parallel EPIC, ICS, Soar

Model Representation
task hierarchy HOS, CCT
production rules CCT, ACT-R, EPIC, Soar, ICS
program GLEAN, COGNET

Predictions
task performance EPIC, CCT, COGNET, GLEAN, HOS, Soar,

ACT-R
memory load ICS, CCT
learning ACT-R, Soar, ICS, GLEAN, CCT
behavior ACT-R, COGNET, EPIC

Table 2.14: Characteristics of WIMP simulation methods that are based on a variation of the MHP.

(ICS, CCT), learning (ACT-R, SOAR, ICS, GLEAN, CCT), or behavior predictions such as
action traces (ACT-R, COGNET, EPIC).

These methods vary widely in their ability to illustrate usability problems. Their e�ective-
ness is largely determined by the characteristics discussed (modeled tasks, modeled components,
component processing, model representation, and predictions). Methods that are potentially the
most e�ective at illustrating usability problems model UI interaction and all components (percep-
tion, cognition, and motor) processing in parallel, employ production rules, and report on task
performance, memory load, learning, and simulated user behavior. Such methods would enable the
most exibility and closest approximation of actual user behavior. The use of production rules is
important in this methodology, because it relaxes the requirement for an explicit task hierarchy,
thus allowing for the modeling of more dynamic behavior, such as Web site navigation.

EPIC is the only simulation analysis method that embodies most of these ideal characteris-
tics. It uses production rules and models UI interaction and all components (perception, cognition,
and motor) processing in parallel. It reports task performance and simulated user behavior, but
does not report memory load and learning estimates. Studies with EPIC have demonstrated that
predictions for telephone operator and menu searching tasks closely match observed data. EPIC
and all of the other methods require considerable learning time and e�ort to use. They are also
applicable to a wide range of WIMP UIs.

Simulation Methods: Automated Analysis { Web UIs

The survey revealed only one simulation approach for analysis of Web interfaces { We-
bCriteria's Site Pro�le [Web Criteria 1999]. Unlike the other simulation approaches, it requires an
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implemented interface for evaluation. Site Pro�le performs analysis in four phases: gather, model,
analyze, and report. During the gather phase, a spider traverses a site (200-600 unique pages) to
collect Web site data. This data is then used to construct a nodes-and-links model of the site.
For the analysis phase, it uses an idealistic Web user model (called Max [Lynch et al. 1999]) to
simulate a user's information seeking behavior; this model is based on prior research with GOMS
analysis. Given a starting point in the site, a path, and a target, Max \follows" the path from the
starting point to the target and logs measurement data. These measurements are used to compute
an accessibility metric, which is then used to generate a report. This approach can be used to
compare Web sites, provided that an appropriate navigation path is supplied for each.

The usefulness of this approach is questionable, since currently it only computes accessi-
bility (navigation time) for the shortest path between speci�ed start and destination pages using a
single user model. Other measurements, such as freshness and page composition, also have ques-
tionable value in improving the Web site. [Brajnik 2000] showed Site Pro�le to support only a
small fraction of the analysis supported by guideline review methods, such as WebSAT and Bobby
(discussed in Section 2.6). [Chak 2000] also cautions that the accessibility measure should be used
as an initial benchmark, not a highly-accurate approximation. Site Pro�le does not entail any
learning time or e�ort on the part of the evaluator, since WebCriteria performs the analysis. The
method is applicable to all Web UIs.

Simulation Methods: Automated Analysis { Discussion

Table 2.13 summarizes automated analysis methods discussed in this section. Unlike most
evaluation approaches, simulation can be used prior to UI implementation in most cases (although
AMME and WebCriteria's Site Pro�le are exceptions to this). Hence, simulation enables alternative
designs to be compared and optimized before implementation.

It is diÆcult to assess the e�ectiveness of simulation methods, although there have been
reports that show EPIC [Kieras et al. 1997] and GLEAN [Baumeister et al. 2000] to be e�ective.
AMME appears to be the most e�ective method, since it is based on actual usage. AMME also
enables ongoing assessment and could be widely used for WIMP and Web interfaces, provided log
�les and system models are available. EPIC is the only method based on the MHP that embodies
the ideal simulator characteristics previously discussed. GLEAN is actually based on EPIC, so it
has similar properties.

In general, simulation methods are more diÆcult to use and learn than other evaluation
methods, because they require constructing or manipulating complex models as well as understand-
ing the theory behind a simulation approach. Approaches based on the MHP are widely applicable
to all WIMP UIs. Approaches that use production rules, such as EPIC, CCT, and Soar, could
possibly be applied to Web UIs where task sequences are not as clearly de�ned as WIMP UIs. Soar
has actually been adapted to model browsing tasks similar to Web browsing [Peck and John 1992].

2.10 Expanding Existing Approaches to Automating Usability Eval-
uation Methods

Automated usability evaluation methods have many potential bene�ts, including reducing
the costs of non-automated methods, aiding in comparisons between alternative designs, and im-
proving consistency in evaluation results. Numerous methods that support automation have been
studied. Based on the methods surveyed, research to further develop log �le analysis, guideline
review, analytical modeling, and simulation techniques could result in several promising automated
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Method Class: Testing
Automation Type: Analysis

Method Type: Log File Analysis - analyze usage data (20 methods)
UE Method UI E�ort
Use metrics during log �le analysis (DRUM, MIKE WIMP IF
UIMS, AMME)
Use metrics during log �le analysis (Service Metrics, Web IF
[Bacheldor 1999])
Use pattern matching during log �le analysis (MRP) WIMP IF
Use task models during log �le analysis (IBOT, QUIP, WIMP IF
WebQuilt, KALDI, UsAGE)
Use task models and pattern matching during log WIMP IFM

�le analysis (�EMA, USINE, RemUSINE)
Visualization of log �les ([Guzdial et al. 1994]) WIMP IF
Statistical analysis or visualization of log �les (traÆc- Web IF
and time-based analyses, VISVIP, Star�eld and Dome
Tree visualizations)

Table 2.15: Synopsis of automated analysis support for usability testing methods. This is a repetition of
Table 2.6.

techniques as discussed in more detail below. Chapter 3 discusses other promising approaches based
on performance evaluation of computer systems.

2.10.1 Expanding Log File Analysis Approaches

The survey showed log �le analysis to be a viable methodology for automated analysis of
usage data. Table 2.15 summarizes current approaches to log �le analysis. These approaches could
be expanded and improved in the following three ways:

� Generating synthetic usage data for analysis;

� Using log �les for comparing (i.e., benchmarking) comparable UIs; and

� Augmenting task-based pattern-matching approaches with guidelines to support automated
critique.

Generating synthetic usage data for analysis. The main limitation of log �le analysis is
that it still requires formal or informal interface use to employ. One way to expand the use and
bene�ts of this methodology is to leverage a small amount of test data to generate a larger set
of plausible usage data. This is even more important for Web interfaces, since server logs do not
capture a complete record of user interactions. The discussion included two simulation approaches,
one using a genetic algorithm [Kasik and George 1996] and the other using information scent
modeling [Chi et al. 2000] (see Section 2.9.1), that automatically generate plausible usage data.
The genetic algorithm approach determines user behavior during deviation points in an expert
user script, while the information scent model selects navigation paths by considering word overlap
between links and web pages. Both of these approaches generate plausible usage traces without
formal or informal interface use. These techniques also provide valuable insight on how to leverage
real usage data from usability tests or informal use. For example, real data could also serve as
input scripts for genetic algorithms; the evaluator could add deviation points to these.
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Method Class: Inspection
Automation Type: Analysis

Method Type: Guideline Review - expert checks guideline conformance
(8 methods)

UE Method UI E�ort
Use quantitative screen measures for analysis (AIDE, WIMP
[Parush et al. 1998])
Analyze terminology and consistency of UI elements (Sherlock) WIMP
Analyze the structure of Web pages (Rating Game, HyperAT, Web
Gentler)
Use guidelines for analysis (WebSAT) Web
Analyze the scanning path of a Web page (Design Advisor) Web

Table 2.16: Synopsis of automated analysis support for inspection methods. This is a repetition of Table
2.8.

Using log �les for comparing UIs. Real and simulated usage data could also be used to
evaluate comparable WIMP UIs, such as word processors and image editors. Task sequences could
comprise a usability benchmark (i.e., a program for measuring UI performance); this is similar to
GOMS analysis of comparable task models. After mapping task sequences into speci�c UI opera-
tions in each interface, the benchmark could be executed within each UI to collect measurements.
Representing this benchmark as a log �le of some form would enable the log �le to be executed
within a UI by replay tools, such as: QC/Replay [Centerline 1999] for X Windows; UsAGE [Uehling
and Wolf 1995] for replaying events within a UIMS (discussed in Section 2.5); or WinRunner [Mer-
cury Interactive 2000] for a wide range of applications (e.g., Java and Oracle applications). This is
a promising open area of research for evaluating comparable WIMP UIs. Chapter 3 explores this
concept in more detail.

Augmenting task-based pattern-matching approaches with guidelines to support automated
critique. Given a wider sampling of usage data, using task models and pattern matching during log
�le analysis is a promising research area to pursue. Task-based approaches that follow the USINE
model in particular (i.e., compare a task model expressed in terms of temporal relationships to
usage traces) provide the most support, among the methods surveyed. USINE outputs information
to help the evaluator understand user behavior, preferences, and errors. Although the authors claim
that this approach works well for WIMP UIs, it needs to be adapted to work for Web UIs where
tasks may not be clearly-de�ned. Additionally, since USINE already reports substantial analysis
data, this data could be compared to usability guidelines to support automated critique.

2.10.2 Expanding Guideline Review Approaches

Several guideline review methods for analysis of WIMP interfaces (see Table 2.16) could be
augmented with guidelines to support automated critique. For example, AIDE (discussed in Section
2.6) provides the most support for evaluating UI designs. It computes a number of quantitative
measures and also generates initial interface layouts. Guidelines, such as thresholds for quantitative
measures, could also be incorporated into AIDE analysis to support automated critique.

Although there are several guideline review methods for analyzing and critiquing Web
UIs (see Tables 2.16 and 2.17), existing approaches only cover a small fraction of usability aspects
[Brajnik 2000] and have not been empirically validated. This dissertation presents an approach for
developing Web design guidelines directly from empirical data.
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Method Class: Inspection
Automation Type: Critique

Method Type: Guideline Review - expert checks guideline conformance
(11 methods)

UE Method UI E�ort
Use guidelines for critiquing (KRI/AG, IDA, CHIMES, Ergoval) WIMP
Use guidelines for critiquing and modifying a UI (SYNOP) WIMP M
Check HTML syntax (Weblint, Dr. Watson) Web
Use guidelines for critiquing (Lift Online, Lift Onsite, Web
Bobby, WebEval)

Table 2.17: Synopsis of automated critique support for inspection methods. This is a repetition of Table
2.9.

2.10.3 Expanding Analytical Modeling Approaches

The survey showed that evaluation within a user interface development environment
(UIDE) is a promising approach for automated analysis via analytical modeling. Table 2.18 sum-
marizes current approaches to analytical modeling. UIDE analysis methods, such as CRITIQUE
and GLEAN, could be augmented with guidelines to support automated critique. Guidelines, such
as thresholds for learning or executing certain types of tasks, could assist the designer with inter-
preting prediction results and improving UI designs. Evaluation within a UIDE should also make
it possible to automatically optimize UI designs based on guidelines.

Although UIDE analysis is promising, it is not widely used in practice. This may be due
to the fact that most tools are research systems and have not been incorporated into popular com-
mercial tools. This is unfortunate since incorporating analytical modeling and possibly simulation
methods within a UIDE should mitigate some barriers to their use, such as being too complex and
time consuming to employ [Bellotti 1988]. Applying such analysis approaches outside of these user
interface development environments is an open research problem.

Cognitive Task Analysis provides some insight for analyzing UIs outside of a UIDE. Fur-
thermore, CTA is a promising approach for automated analysis, provided more e�ort is spent to
fully develop this methodology. This approach is consistent with analytical modeling techniques
employed outside of HCI, such as in the performance evaluation of computer systems [Jain 1991]
(see Chapter 3); this is because with CTA the evaluator provides UI parameters to an underlying
model for analysis versus developing a new model to assess each UI. However, one of the drawbacks
of CTA is the need to describe the interface to the system. Integrating this approach into a UIDE
or UIMS should make this approach more tenable.

As previously discussed, analytical modeling approaches for Web UIs still remain to be
developed. It may not be possible to develop new approaches using a paradigm that requires
explicit task hierarchies. However, a variation of CTA may be appropriate for Web UIs.

2.10.4 Expanding Simulation Approaches

Table 2.19 summarizes current approaches to simulation analysis. The survey showed
that existing simulations based on a human information processor model have widely di�erent
uses (e.g., modeling a user interacting with a UI or solving a problem). Thus, it is diÆcult to
draw concrete conclusions about the e�ectiveness of these approaches. Simulation in general is
a promising research area to pursue for automated analysis, especially for evaluating alternative
designs.
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Method Class: Analytical Modeling
Automation Type: Analysis

Method Type: UIDE Analysis - conduct GOMS analysis within a UIDE
(4 methods)

UE Method UI E�ort
Generate predictions for GOMS task models (QGOMS, CATHCI) WIMP M
Generate GOMS task models and predictions (USAGE, WIMP M
CRITIQUE)

Method Type: Cognitive Task Analysis - predict usability problems (1 method)
UE Method UI E�ort
Cognitive Task Analysis (CTA) WIMP M

Method Type: Programmable User Models - write program that acts like a user
user (1 method)

UE Method UI E�ort
Programmable User Models (PUM) WIMP M

Table 2.18: Synopsis of automated analysis support for analytical modeling methods. This is a repetition
of Table 2.11.

Method Class: Simulation
Automation Type: Analysis

Method Type: Petri Net Modeling - mimic user interaction from usage data
(1 method)

UE Method UI E�ort
Petri Net Modeling (AMME) WIMP IF

Method Type: Information Processor Modeling - mimic user interaction
(9 methods)

UE Method UI E�ort
Employ a computational cognitive architecture for UI analysis WIMP M
(ACT-R, COGNET, EPIC, HOS, Soar, CCT, ICS, GLEAN)
Employ a GOMS-like model to analyze navigation (Site Pro�le) Web M

Table 2.19: Synopsis of automated analysis support for simulation methods. This is a repetition of Table
2.13.
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It is possible to use several simulation techniques employed in the performance analysis of
computer systems, in particular trace-driven discrete-event simulation and Monte Carlo simulation
[Jain 1991], to enable designers to perform what-if analyses with UIs (see Chapter 3). Trace-driven
discrete-event simulations use real usage data to model a system as it evolves over time. Analysts
use this approach to simulate many aspects of computer systems, such as the processing subsys-
tem, operating system, and various resource scheduling algorithms. In the user interface �eld, all
surveyed approaches use discrete-event simulation. However, AMME constructs simulation mod-
els directly from logged usage, which is a form of trace-driven discrete-event simulation. Similarly,
other simulators could be altered to process log �les as input instead of explicit task or user models,
potentially producing more realistic and accurate simulations.

Monte Carlo simulations enable an evaluator to model a system probabilistically (i.e.,
sampling from a probability distribution is used to determine what event occurs next). Monte
Carlo simulation could contribute substantially to automated analysis by eliminating the need for
explicit task hierarchies or user models. Most simulations in this domain rely on a single user
model, typically an expert user. Monte Carlo simulation would enable designers to perform what-if
analysis and study design alternatives with many user models. The approach employed by [Chi
et al. 2000] to simulate Web site navigation is a close approximation to Monte Carlo simulation.

2.11 Summary

This chapter provided an overview of usability evaluation and presented a taxonomy for
comparing various methods. It also presented an extensive survey of the use of automation inWIMP
and Web interface evaluation, �nding that automation is used in only 36% of methods surveyed.
Of all of the surveyed methods, only 29% are free from requirements of formal or informal interface
use. All approaches that do not require formal or informal use, with the exception of guideline
review, are based on analytical modeling or simulation.

It is important to keep in mind that automation of usability evaluation does not capture
important qualitative and subjective information (such as user preferences and misconceptions)
that can only be unveiled via usability testing, heuristic evaluation, and other standard inquiry
methods. Nevertheless, simulation and analytical modeling should be useful for helping designers
choose among design alternatives before committing to expensive development costs.

Furthermore, evaluators could use automation in tandem with what are usually non-
automated methods, such as heuristic evaluation and usability testing. For example, an evaluator
doing a heuristic evaluation could observe automatically-generated usage traces executing within a
UI.

Adding automation to usability evaluation has many potential bene�ts, including reduc-
ing the costs of non-automated methods, aiding in comparisons between alternative designs, and
improving consistency in usability evaluation. Research to further develop analytical modeling,
simulation, guideline review, and log �le analysis techniques could result in several promising au-
tomated techniques. The next chapter discusses new approaches that could be developed based on
performance evaluation of computer systems.
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Chapter 3

New Automated Usability Evaluation

Methods

3.1 Introduction

As discussed in Chapter 2, automated usability evaluation (AUE) methods are promising
complements to non-automated methods, such as heuristic evaluation and usability testing. AUE
methods enable an evaluator to identify potential usability problems quickly and inexpensively
compared to non-automated methods and can decrease the overall cost of the evaluation phase
[John and Kieras 1996; Nielsen 1993]. Despite the potential bene�ts of AUE methods, this �eld is
greatly underexplored as shown by the survey in Chapter 2.

Performance evaluation (PE) encompasses established methodologies for measuring the
performance (e.g., speed, throughput, and response time) of a system and for understanding the
cause of measured performance [Jain 1991]. Since computer systems were �rst invented in the
1950's, system designers and analysts have used these methodologies extensively to compare and
improve the performance of hardware and software systems.

The intent of this chapter is to illustrate how PE provides insight about new methods for
automated usability assessment. As such, the chapter systematically compares the two method-
ologies. It provides background for PE, discusses the mapping between the two methodologies,
and introduces two example applications. It then describes how to apply PE to UE for three dif-
ferent classes of evaluation: measurement, simulation, and analytical modeling. In each case, the
discussion illustrates the potential for new automated usability evaluation methods based on this
comparison.

3.2 The Performance Evaluation Process

System designers, analysts, and high performance computing experts have used perfor-
mance evaluation techniques extensively to improve and compare the performance of hardware and
software systems. More recently, human performance and process engineers began to use these
methodologies to understand and improve the performance of humans and work practices. Perfor-
mance in these contexts is a measure of the speed at which a system (e.g., a computer, person, or
process) operates and/or its total e�ectiveness, including throughput, response time, availability,
and reliability. Performance evaluation encompasses methodologies for measuring and for under-
standing the cause of measured performance. Although this methodology has been utilized in many
domains, this chapter focuses on its application in the computer hardware and software domain.
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1. Specify performance evaluation goals.

2. De�ne system boundary.

3. List system services and outcomes.

4. Select performance metrics.

5. List system and workload parameters.

6. Select factors and their levels.

7. Select evaluation method(s).

8. Select workload.

9. Implement evaluation program.

10. Design experiments.

11. Capture performance data.

12. Analyze and interpret performance data.

13. Critique system to suggest improvements.

14. Iterate the process if necessary.

15. Present results.

Figure 3.1: Activities that may occur during the performance evaluation process.

Performance evaluation is a process that entails many activities, including determining
performance metrics, measuring performance, and analyzing measured performance. Jain [1991]
and Law and Kelton [1991] present similar ten-step systematic approaches to performance evalu-
ation; these steps were adapted for this discussion. Figure 3.1 depicts a �fteen-step process for
conducting a performance evaluation. This process is similar to the one outlined for usability eval-
uation in Chapter 2. Jain [1991] and Law and Kelton [1991] provide detailed discussions of the
steps comprising the performance evaluation process. Hence, they are not discussed in this chapter.

3.3 Overview of Performance Evaluation Methods

PE consists of three broad classes of evaluation methods: measurement, simulation, and
analytical modeling [Jain 1991]. A key feature of all of these approaches is that they enable
an analyst to automatically generate quantitative performance data. Such data can: (i) help
designers explore design alternatives; (ii) help analysts tune system performance; and (iii) help
consumers purchase systems that satisfy their performance requirements. The methods di�er along
several dimensions, including the system stage at which they are applicable, cost, accuracy, time,
and resource requirements. Table 3.1 compares the methods along these dimensions; the table
is modeled after the comparison in [Jain 1991]. The columns reect the order of importance of
dimensions.

Measurement has the potential to be the most accurate and credible evaluation method;
however, it is only applicable to an existing system { either the target system or one similar to
it. Simulation is usually more accurate and credible than analytical modeling, since it allows
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Method Stage Time Resources

Analytical Modeling Any Small Analysts
Simulation Any Medium Computer Languages
Measurement Post-prototype Varies Instruments

Method Accuracy Trade-o� Cost Credibility

Analytical Modeling Low Easy Small Low
Simulation Moderate Moderate Medium Medium
Measurement Varies DiÆcult High High

Table 3.1: Summary of the performance evaluation method classes.

the analyst to incorporate greater system detail. However, simulations require considerably more
time to develop than analytical models. Analytical modeling is usually the least accurate and
consequently the least credible evaluation method because of simpli�cations and assumptions made
to produce the model. However, this method can be valuable for comparing alternatives during
early system design.

Due to the various trade-o�s associated with each evaluation method, it is advisable
to employ two or three methods simultaneously [Jain 1991; Law and Kelton 1991; Sauer and
Chandy 1981]. Typically, an analyst may use simulation and analytical modeling together to verify
and validate the results of each one. It is especially advisable to use analytical modeling and/or
simulation along with measurement, since measurement is highly susceptible to experimental errors.

The remaining sections discuss analytical modeling, simulation, and measurement meth-
ods in more detail.

3.4 Measurement Methods

Capturing real system performance is by far the most credible, yet most expensive perfor-
mance evaluation method. It requires careful selection of performance metrics, a means of running a
workload, and a means of capturing performance measures for the workload. The following sections
discuss these aspects.

3.4.1 Measurement Methods: Selecting Performance Metrics

Performance metrics are a crucial component of this type of assessment and care must be
taken when selecting measures. The goal is to choose a minimal number of metrics that reveal the
maximum amount of relevant performance detail for the system under study. In instances where
multiple users share the system under evaluation (e.g., distributed computing), the analyst must
give consideration to both individual and global metrics. Individual metrics reect performance for
each user, while global metrics reect the system-wide performance.

Jain [1991] suggests using the list of possible service outcomes (correct response1, incorrect
response, or nonresponse) to guide the selection of performance metrics. Jain distinguishes three
categories of metrics { speed, reliability, and availability { corresponding to the three possible
outcomes. Jain also distinguishes between metrics that measure individual (single user) and global

1Response is a generic term applicable to a wide range of services (e.g., query processing, I/O processing, CPU
processing, etc.).
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Metric Performance
Outcome Type Example Metric Scope Goal

Correct Response Speed response time IG LB
throughput IG HB
utilization G NB

Incorrect Response Reliability probability of error G LB
time between errors G LB

Nonresponse Availability probability of failure G LB
time between failures G LB

Table 3.2: Metrics associated with possible outcomes. Reliability and availability metrics are typically
captured over a time period (e.g., weeks or months) and are used to assess system performance across users
versus for individual users. The scope of a metric is an individual user (I), global or across users (G), or
both. Performance goals include: lower is better (LB), higher is better (HB), and nominal or middle is better
(NB).

(across users) performance. Table 3.2 summarizes these distinctions along with example metrics.
The scope of each metric { individual or global { is denoted with an I and G, respectively. The
following performance goals are also appropriately associated with each example metric: LB - lower
is better; HB - higher is better; and NB - nominal or middle is better. Below is a discussion of
each of the metric types.

� Speed: a measure of system response time, throughput, or utilization. Response time is the
time between a user's request and the system's response to the request. Throughput is the
rate (in requests per unit of time) at which the system services requests. Utilization is the
fraction of time the system is busy servicing requests.

� Reliability: a measure of the fraction of time the system correctly services users' requests.

� Availability: a measure of the fraction of time the system is available to service user requests.

It is possible that an analyst may need to employ several metrics, individual and global,
for each system service; hence, the number of metrics can grow proportionally (e.g., twice the
number of services to be evaluated). To reduce the number of metrics, Jain suggests selecting a
subset of metrics with low variability, nonredundancy, and completeness as discussed below.

� Low Variability: metrics that are not a ratio of two or more variables.

� Nonredundancy: metrics that do not convey essentially the same information.

� Completeness: metrics that reect all of the possible outcomes of a service.

3.4.2 Measurement Methods: Running a Workload

In order to capture performance data, the analyst must �rst load a workload onto the
system via a load driver. Internal drivers, live operators, and remote terminal emulators are the
major types of load drivers and are discussed below.

� Internal Driver: encapsulates mechanisms for loading and running the workload into one
program, as is the case in benchmarks. One problem with this approach is that loading the
workload may a�ect system performance during execution. Nonetheless, benchmarks are a
commonly used internal load driver. They are discussed in more detail below.
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� Live Operators: real users submit requests to the system. The use of live operators is
extremely costly and hard to control.

� Remote Terminal Emulators: programs that run on separate computers and submit
requests to the system under study. This is one of the most popular and desirable load
drivers used; it is not nearly as costly as using live operators, and it eliminates the interference
problem of internal drivers.

Measurement Methods: Running a Workload { Benchmarking

Benchmarking [Dowd 1993; Jain 1991; Weicker 1990], is one of the most commonly used
measurement techniques for comparing two or more systems. Benchmarking entails using a high-
level, portable program with a realistic workload and adequate problem size to automatically
quantify performance aspects in a reproducible manner. A single such program is referred to as a
benchmark, while multiple programs used jointly are referred to as a benchmark suite. Benchmarks
automatically specify performance metrics and workloads. As such, they simplify the performance
evaluation process to some degree.

Benchmarks di�er along several dimensions, including the application domain, the code
type used, and the type of execution measured as summarized below.

� Application Domain: the benchmark workload and problem size typi�es a speci�c appli-
cation domain (e.g., scienti�c computing, graphics, or databases) and measures performance
aspects germane to this domain. For example, a scienti�c computing benchmark may as-
sess oating-point computation speed, whereas a database benchmark may assess transaction
completion speed or throughput.

� Code Type: the actual code executed and measured can be a real application (i.e., it
exercises system resources as fully and realistically as possible), a kernel (i.e., the computation
\core" of an application), or a synthetic program designed to model activity of a typical
program or to mimic a real workload.

� Execution Type: the benchmark code can measure several execution types - single stream,
throughput, or interactive. Single stream benchmarking measures the time to execute one
or more benchmarks individually. Throughput benchmarking collects measurements while
multiple programs run concurrently. Use of the term throughput here is distinct from its
use as a performance measure by both single stream and interactive benchmarks. In these
instances multiple programs are not running concurrently; hence, they are not considered
throughput benchmarks. Throughput benchmarks are not as common nowadays as they
were with batch processing systems. Interactive benchmarking measures response time or
throughput in a client/server environment; this execution type requires a second program to
simulate user requests to the server.

Several industry benchmarks provide objective measures of system performance. Stan-
dard benchmarks help buyers to make informed purchases and vendors to prioritize optimization
in their systems. One drawback of these benchmarks is that they lack orthogonality because they
sometimes measure many things at once; this makes it diÆcult to draw concrete conclusions about
performance. Table 3.3 summarizes several commonly used industry benchmarks. There are pub-
lished performance results from a myriad of systems for each of these benchmarks; thus, enabling
comparison across systems.
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Benchmark Application Domain Code Type Execution Type

Linpack scienti�c computing application single stream
STREAM scienti�c computing synthetic single stream
TPC-C database synthetic interactive
TPC-D database synthetic interactive
SPEC Web 96 Web synthetic interactive

Benchmark What's Measured How It's Measured Metric

Linpack oating point speed solving linear equation MFlops
STREAM memory bandwidth performing vector operations MB/s
TPC-C server throughput servicing complex transactions tpmC
TPC-D server throughput servicing complex db queries QphD
SPEC Web 96 server throughput servicing HTTP GET requests SPECweb96

Table 3.3: Summary of commonly used industry benchmarks. The What's Measured column reects the
performance aspect measured by each benchmark. The How It's Measured column describes the workload
used for measuring this performance aspect, while the Metric column lists the measurement returned by
each benchmark.

3.4.3 Measurement Methods: Capturing Performance Metrics

Analysts use several types of monitors (e.g., hardware counters and software timers) as
well as accounting logs to capture performance data as discussed below.

� Monitors: measure system performance at some level. Hardware monitors, such as coun-
ters, measure low-level performance aspects (e.g., signals on buses and instruction execution
time). Software monitors, such as code instrumented with timing calls, measure high-level
performance aspects (e.g., queue lengths and time to execute a block of code). There are also
�rmware monitors, such as a processor microcode instrumented with timing calls, that mea-
sure performance aspects of network interface cards and other external system components.
Sometimes analysts use multiple hardware, software and/or �rmware monitors simultaneously
as a hybrid monitor.

� Accounting Logs: another form of software monitors that automatically capture perfor-
mance data during program execution. Hence, they do not require system instrumentation as
is the case for monitors. Usually, compiling a program with certain ags enables accounting.

Tracing and sampling are the primary measurement techniques used in monitors and
accounting logs. Tracing actually produces a time-stamped record of requests as they move through
various stages of the system and/or of event occurrences in the system. Sampling or timing entails
reading a clock at speci�ed times to compute elapsed time between timing events.

3.5 Analytical Modeling Methods

An analytical model consists of mathematical or logical relationships that represent the
analyst's assumptions about how a system works. By solving this model, the analyst can predict
system performance. Analytical modeling approaches range in complexity from simple \back of
the envelope" calculations to formal queuing theory as discussed below.
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Simplistic Models. \Back of the envelope" and \front of the terminal" [Sauer and Chandy 1981]
calculations are two relatively simple analytical modeling approaches. In the \back of the
envelope" approach the system model is extremely crude such that it facilitates solving the
model via unaided calculation. An analyst may solve slightly more complicated models using
modeling software or a simple mathematical environment, such as Matlab; this is considered
to be \front of the terminal" calculation. Since simplistic models are very abstract represen-
tations of systems, the accuracy of the results produced are highly questionable. Nonetheless,
this approach is very appropriate during the design stage of a system.

Informal Queuing Theory. In this approach an analyst develops a queuing model (i.e., a model
of the times a request spends in various system resource queues) that captures all of the
signi�cant aspects of the system. The analyst then uses this model to get an approximation
(e.g., using numerical methods) to the model solution (i.e., response time). The model is
usually signi�cantly more detailed than the previous approach but less thorough and accurate
than formal queuing theory. The latter case is due to the use of approximate versus exact
system parameters.

Formal Queuing Theory. Formal queuing theory requires more accurate speci�cation of the
following six system parameters: interarrival times of requests; service time at each queue;
number of resources or servers; system capacity (i.e., number of requests that can be serviced);
population size or the maximum number of requests; and the service discipline or policy for
servicing requests, such as �rst come �rst served. This approach can also be used to model
multiple queues in a system as a queuing network. The objective of formal queuing theory
is to solve models for parameters that impact performance to answer questions, such as the
number of servers required to ful�ll the current demand or appropriate sizes of queue bu�ers
to prevent overow.

3.6 Simulation Methods

Some models may be too complex to solve using analytical modeling or may have no
analytical solution. In these cases the analyst can create a simulation (i.e., a computer program)
to exercise the model with various inputs to see the resulting a�ects on output measures of perfor-
mance. The analyst accomplishes this with a system model, a program or simulator that behaves
like the model, and detailed input data to the program. Simulation allows the analyst to create ar-
bitrarily detailed models of systems. Consequently, performance analysts consider simulation to be
more credible and accurate than analytical modeling. Nonetheless, simulation requires considerably
more time to develop as well as compute resources to run.

One of the most important aspects of a simulation is the underlying simulation model.
Simulation models vary along three major dimensions as discussed below.

� System Evolution: time-independent models are a representation of a system at a particular
time that is totally independent of time, whereas time-dependent models represent a system
as it evolves over time.

� System Parameters: deterministic models do not contain probabilistic (i.e., generated
based on random numbers) input components, while probabilistic models may contain some
random input components.

� Number of System States: �nite models have a countable number of system states,
whereas in�nite models have an uncountable number of states.
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These aspects of the model largely govern the type of simulation the analyst uses during
in performance studies. Below is a discussion of several commonly used simulation approaches.

Discrete-Event. In a discrete-event simulation the state variables of the system change instanta-
neously in response to events.

Continuous-Event. In this simulation approach the state variables of a system change continu-
ously with respect to time.

Combined Discrete-Continuous. A simulation can use both the discrete-event and continuous-
event approaches. For example, a discrete system change may occur when a continuous
variable reaches a threshold value.

Monte Carlo. AMonte Carlo simulation uses random numbers to solve stochastic or deterministic
models without time dependence. Analysts use this simulation approach to model probabilis-
tic phenomenon that do not change characteristics with time, such as cancer cell growth.

Any of these simulation approaches, with the exception of Monte Carlo simulation, can
be driven by a time-ordered record of events taken from a real system. This is referred to as
trace-driven simulation. Analysts consider this type of simulation to be the most credible and
accurate.

Several problems associated with all of these simulation approaches include: an inappro-
priate level of system detail, poor random number generators and seeds, no veri�cation or validation
of models, too short simulation runs, and too long simulation runs due to the model complexity.

3.7 Mapping Between Performance and Usability Evaluation

As previously discussed, performance evaluation encompasses established methodologies
for measuring the performance (e.g., speed, throughput, and response time) of a system and for
understanding the cause of measured performance [Jain 1991]. PE consists of three broad classes
of evaluation methods: measurement, analytical modeling, and simulation. A key feature of all of
these approaches is that they enable an analyst to automatically generate quantitative performance
data.

Usability evaluation, on the other hand, encompasses methodologies for measuring usabil-
ity aspects (e.g., e�ectiveness, eÆciency, and satisfaction) of an interface and for identifying speci�c
problems [Nielsen 1993]. As discussed in Chapter 2, UE consists of �ve classes of methods: testing,
inspection, inquiry, analytical modeling, and simulation. Although there has been some work to
automate these approaches, automated UE methods are greatly underexplored. Furthermore, only
29% of existing methods support the same level of automation as PE methods (i.e., automated
capture, analysis, or critique without requiring interface usage).

The remainder of this chapter discusses how PE can be used as a guiding framework for
developing new automated UE methods for both WIMP (Windows, Icons, Menus and Pointers)
and Web interfaces. Similarly to PE, automated UE methods can provide additional support to
evaluators using non-automated methods and for designers exploring design alternatives. These
methods are even more crucial in instances where performance is a major consideration.

Sections 2.3 and 3.2 show the UE and PE processes to be quite similar. Furthermore, there
is a mapping between the methods used within each domain. Table 3.4 summarizes this mapping.
PE measurement, analytical modeling, and simulation methods are used as a framework for this
discussion. The following section presents two applications used throughout the comparison of PE
and UE.
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PE UE

measurement testing, inspection, inquiry
analytical modeling analytical modeling
simulation simulation

Table 3.4: Mapping between performance evaluation (PE) and usability evaluation (UE) method classes.

Figure 3.2: Address label example in Microsoft Word.

3.7.1 Example Applications and Tasks

Two example applications and representative tasks are referred to throughout this dis-
cussion. The �rst application is a word processor with a task of creating address labels { six to a
page where each label has a rectangular border. Figure 3.2 depicts a sample set of address labels
in Microsoft Word.

It is assumed that the user loaded the application prior to beginning the task and that
the cursor is at the top left margin of a blank document when the user begins the label creation
task. Analysis of this task within Microsoft Word 97 revealed that it requires an expert user 55
steps to complete (see Appendix B). A replicated analysis in Microsoft Word 2000 derived the
same number of steps. Figure 3.3 shows the �rst thirteen steps required to create the �rst label,
along with the corresponding high-level goals; Appendix B contains the high-level goals for all 55
steps in the task sequence. A high-level task structure similar to NGOMSL [John and Kieras 1996]
is used in discussions.

The second application is an information-centric Web site typical of large-scale federal
and state agencies. The task for this application is to navigate from a site entry point to a page
that contains some target information. Figure 3.4 depicts this example with a sample navigation
path. Unlike the label creation example, there is no clear step-by-step procedure for completing
the task. The user could start from any page within the site and follow various paths to the target
information. Hence, it is not possible to specify an explicit task structure as speci�ed for the label
creation example without restricting users to traversing one navigation path through the site. It
is assumed that users are unfamiliar with the site and that locating the information is a one-time
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  2.  Select Envelopes and Labels item
  3.  Click Options button
  4.  Select label size from list
  5.  Click OK button
  6.  Click New Document button
  7.  Type address in first label
  8.  Highlight address

Type address

  9.  Click Center button
10.  Select Format menu
11.  Select Borders and Shading item
12.  Select Box setting
13.  Click OK button

to label format
Change document

Add border

  1.  Select Tools menu

Center address

Figure 3.3: Label creation steps in Microsoft Word 97 and 2000.

Measurement Measurement Type
Workload Monitoring Pro�ling

Benchmark
Granularity �ne coarse
Interference yes yes

Real User
Granularity �ne coarse
Interference no no

Table 3.5: Characteristics of measurement techniques in the performance evaluation domain.

task. Thus, bookmarking is not used to access the information. It also assumed that users enter
the site via a search engine or external link.

The remainder of this chapter demonstrates how to determine the number of errors and
the navigation time for the label creation and site navigation tasks, respectively.

3.8 New UE Measurement Methods

3.8.1 Measurement in Performance Evaluation

Measurement is by far the most credible, yet most expensive PE method [Jain 1991]. It
requires a means of running a workload on a system as well as a means of capturing quantitative
performance data while the workload runs. A performance analyst usually derives the workload
from current or anticipated system use. Capturing quantitative data for the workload enables the
analyst to identify performance bottlenecks, tune system performance, and forecast future perfor-
mance. Table 3.5 summarizes relevant techniques for running workloads and capturing quantitative
performance data. Section 3.4 discusses these approaches in more detail.
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Figure 3.4: Information-centric Web site example.

3.8.2 Measurement in Usability Evaluation

Inspection, testing, and inquiry UE methods are equivalent to PE measurement tech-
niques; most require an interface or prototype to exist to capture measurements of some form
(e.g., number of heuristic violations, task completion time, and subjective rating). Most evalua-
tion methods surveyed in Chapter 2 do not produce quantitative data. However, methods that do
produce quantitative data, such as performance measurement2, use both pro�ling and monitoring
techniques (e.g., high-level and low-level logging) similarly to their PE counterparts, and all of
these methods require a real user (an evaluator or test participant).

Although monitoring with benchmarks is the predominate approach in the PE domain,
it is unused in the UE domain. The closest approximation is replaying previously-captured usage
traces in an interface [Neal and Simons 1983; Zettlemoyer et al. 1999]. Early work with Playback
[Neal and Simons 1983] involved recording actions performed on the keyboard during usability
testing and then sending the recorded commands back to the application. The evaluator could
then observe and analyze the recorded interaction.

More recent work automatically generates usage traces to drive replay tools for Motif-
based UIs [Kasik and George 1996]. The goal of this work is to use a small number of input
parameters to inexpensively generate a large number of test scripts that a tester can then use
to �nd weak spots and application failures during the design phase. The authors implemented a
prototype system that enables a designer to generate an expert user test script and then insert
deviation commands at di�erent points within the script. The system uses a genetic algorithm to
choose user behavior during the deviation points as a means for simulating a novice user learning
by experimentation.

Recent work in agent technology captures widget-level usage traces and automatically

2Performance measurement in this context refers to usability testing methods rather than the performance evalu-
ation method.
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analyzes user actions during replay [Zettlemoyer et al. 1999]. The IBOT system interacts with
Windows operating systems to capture low-level window events (e.g., keyboard and mouse actions)
and screen bu�er information (i.e., a screen image that can be processed to automatically identify
widgets). The system then combines this information into interface abstractions (e.g., menu select
and menubar search operations) that it can use to infer UI activities at a high-level. The IBOT
system can also perform the same operations as a real user by adding window events to the system
event queue. Similar work has been done in the software engineering �eld for generating test data
values from source code [Jasper et al. 1994].

Guideline review based on quantitative measures is a somewhat distant approximation of
PE benchmarking. Automated analysis tools, such as AIDE (semi-Automated Interface Designer
and Evaluator) [Sears 1995], compute quantitative measures for WIMP UIs and compare them
to validated thresholds. Similar, underdeveloped approaches exist for Web UI assessment (e.g.,
HyperAT [Theng and Marsden 1998], Gentler [Thimbleby 1997], and the Rating Game [Stein
1997]). Thresholds either do not exist or have not been empirically validated.

3.8.3 Applying PE Measurement Methods to UE

As previously stated, benchmarking is widely used in PE to automatically capture quan-
titative performance data on computer systems. Usability benchmarks, especially benchmarks that
can be executed within any UI, is a promising open area of research. Nonetheless, there are three
major challenges to making this a reality in the UE domain. Brief discussions of these challenges
and potential solutions are below; the next section provides more depth on these issues.

The �rst challenge is generating usage traces without conducting usability testing or
reusing traces generated during usability testing. One approach was discussed above [Neal and
Simons 1983]; however, more work needs to be done to automatically generate traces that repre-
sent a wider range of users and tasks to complement real traces. In particular, a genetic algorithm
could simulate usage styles other than a novice user learning-by-experimentation [Kasik and George
1996]. It may also be bene�cial to implement a hybrid trace generation scheme wherein traditional
random number generation is used to explore the outer limits of a UI [Kasik and George 1996].
Data from real users, such as typical errors and their frequencies, could serve as input in both cases
to maximize the realism of generated tasks.

The second challenge is making such traces portable to any UI. In the PE domain this
is accomplished by writing hardware-independent programs in a common programming language,
such as C or Fortran. Analysts then compile these programs with the appropriate compiler ags and
execute them to capture performance data. There needs to be a similar means of creating portable
usage traces. One way may entail mapping high-level tasks captured in a trace into speci�c interface
operations. The USINE system [Lecerof and Patern�o 1998] provides insight on accomplishing this.
In this system, evaluators create task models expressing temporal relationships between steps and
create a table specifying mappings between log �le entries and the task model. USINE uses this
information to identify task sequences in log �les that violate temporal relationships. Another
approach employed in the IBOT system is to use system-level calls (e.g., mouse and keyboard
event messages); this simpli�es porting to other operating systems. The authors claim that the
IBOT agent can interact with any o�-the-shelf application because it is independent of and external
to the UI.

A proposed solution would combine both the USINE and IBOT approaches. Similarly to
USINE, a task programming tool could prompt evaluators for application steps corresponding to
each task within a generated trace. Ideally, the evaluator could use programming-by-demonstration
[Myers 1992] to record application steps. The task programming tool could translate application
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Challenge PE UE

Executable Workload software programs usage traces (real & generated)
Portability hardware-independent high-level traces with UI mapping,

software programs benchmark program generation
Quantitative Metrics execution time, number of errors, navigation time

standard metrics

Table 3.6: Summary of the challenges in using PE measurement techniques within the UE domain. The
PE column describes how these challenges are resolved within the PE domain, and the UE column describes
potential ways to resolve these challenges within the UE domain.

sequences into a format, such as system-level calls, that could be subsequently executed within the
application. A benchmark generation tool could then translate the usage trace and mapped appli-
cation sequences into a program for execution similarly to replay tools; each application sequence
could be expressed as a separate function in the program. The Java programming language is
promising for the task programming tool, the benchmark generation tool, as well as the generated
benchmark programs.

The �nal challenge is �nding a good set of quantitative metrics to capture while executing
a trace. Task completion time, the number and types of errors, and other typical UI metrics may
suÆce for this. One of the drawbacks of relying solely on quantitative metrics is that they do not
capture subjective information, such as user preferences given a choice of UIs with comparable
performance and features.

Usability benchmarks are appropriate for evaluating existing UIs or working prototypes
(as opposed to designs). Evaluators can use benchmark results to facilitate identifying potential
usability problems in two ways: (i) To compare the results of an expert user trace to results from
those generated by a trace generation program. This may illustrate potential design improvements
to mitigate performance bottlenecks, decrease the occurrence of errors, and reduce task completion
time. (ii) To compare results to those reported for comparable UIs or alternative designs. This is
useful for competitive analysis and for studying design tradeo�s. Both of these uses are consistent
with benchmark analysis in the PE domain.

Table 3.6 summarizes the challenges with using benchmarking in the UE area. The next
section describes usability benchmarks for the example tasks in more detail.

3.8.4 Example Usability Benchmark

As previously discussed, executable and portable usage traces and a set of quantitative
performance metrics are required to construct a benchmark. To generate high-level usage traces, the
evaluator could specify a high-level representation of the label creation task sequence previously
discussed. Figure 3.5 depicts the nine high-level steps that correspond to the 55-step Microsoft
Word sequence. It is also possible to process a real user trace to create a high-level task sequence.

Figure 3.6 demonstrates a procedure for using the high-level task sequence as input for
constructing and executing a usability benchmark. The evaluator could use the high-level trace as
a task template in which deviation points could be identi�ed similarly to the work done in [Kasik
and George 1996]. The trace generation program would then generate plausible variations of the
task sequence that represent alternative user behaviors during task completion. Figure 3.7 shows
the type of output that the program might generate { an example in which a user mistakenly
enters text before changing the document format, corrects the mistake, and completes the task as
speci�ed by the task template. This approach enables the evaluator to amplify the results taken
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 2.  Enter text
 3.  Center text
 4.  Add square border to text
 5.  Copy text

 1.  Change document to label format

 6.  Move cursor to next label
 7.  Paste text
 8.  Add square border to text
 9.  Repeat steps 6-8 for remaining 4 labels

Figure 3.5: High-level steps for the label creation task.
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Figure 3.6: The proposed usability benchmarking procedure.

from a small number of inputs or test subjects to generate behavior equivalent to a larger number
of users and wider UI coverage.

An evaluator or designer could then map all of the high-level tasks in the generated traces
into equivalent UI-speci�c operations as depicted in Figure 3.6. Figure 3.3 shows one such mapping
for creating the �rst label in Microsoft Word. Programming-by-demonstration [Myers 1992] is one
way to facilitate this mapping. An agent program could prompt the designer to demonstrate a task
sequence, such as delete document, and record the steps to facilitate playback. If there is more than
one way to accomplish a task, then the designer could demonstrate multiple methods for a task
and specify a frequency for each, similarly to GOMS [John and Kieras 1996] task representations.

Given the high-level usage traces and UI mappings, the agent could then automatically
generate executable benchmark programs to replay in a UI as depicted in Figure 3.6. To facilitate
error analysis, the agent could also generate a designer benchmark (i.e., a benchmark representing
the correct sequences of operations to complete a task) from the task template and UI mappings.
The agent would then \run" (i.e., send operations to the UI) this designer benchmark once to record



68

 2.  Change document to label format
 3.  Delete document
 4.  Create new document
 5.  Change document to label format

 .

 6.  Enter text

 1.  Enter text

 :

Figure 3.7: Example trace for the label creation task.

 2.  Select Main link
 3.  Select Topic A link
 4.  Click Back button
 5.  Select Topic B link

 1.  Select Topic D page (Site entry point)

 6.  Select Topic B3 link
 7.  Select Topic B2 link
 8.  Select Topic B2-3 link
 9.  Select Target Information link

Figure 3.8: Example trace for the information-seeking task.

system state after each operation. The agent would repeat this procedure for each generated
benchmark, record discrepancies (i.e., di�erences in resulting system state between the designer
benchmark and other benchmarks) as errors, note error locations, and report whether the task
completed successfully3. The agent could also aggregate data over multiple traces to provide more
conclusive error analysis data.

Similar approaches using generated benchmark programs as well as quantitative measures
could be applied to the information-centric Web site example. Generating traces for multiple
navigation paths (and in some cases all possible paths) is the most crucial component for this
example. An algorithm can determine plausible paths based on the navigation structure and
content of the links and pages. Chi et al. [2000] also demonstrates a methodology for generating
plausible navigation paths based on information scent. Genetic algorithm modeling could also be
employed for this. Again, as input the evaluator could use real user traces from Web server logs or
a designer-generated trace. Since navigation operations (e.g., select a link, click the back or forward
button, etc.) are standard in Web browsers, it may be possible to eliminate the mapping operation
that was required for the WIMP example. Hence, the genetic algorithm could generate executable
benchmarks directly as depicted in Figure 3.8. Figure 3.4 shows the corresponding navigation path.

A software agent could simulate navigation, reading, form completion, and other user
behavior within the actual site and report navigation timing data. WebCriteria's Site Pro�le tool
[Web Criteria 1999] uses a similar approach to simulate a user's information-seeking behavior within
a model of an implemented Web site. Site Pro�le uses a standard Web user model to follow an

3Actually \running" both benchmarks in a UI is required, since it may not be possible to ascertain successful task
completion by comparing two task sequences. This can only be accomplished by comparing system state.
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explicit navigation path through the site and computes an accessibility metric based on predictions
of load time and other performance measures. This approach su�ers from two major limitations: it
uses a single user model; and it requires speci�cation of an explicit navigation path. The proposed
approach with automatically-generated navigation paths would not have these limitations.

Another benchmarking approach for Web sites could entail computing quantitative mea-
sures for Web pages and sites and comparing these measures to validated thresholds or pro�les
of highly-rated sites. As previously discussed, HyperAt, Gentler, and the Rating Game compute
quantitative measures (e.g., number of links, number of words, and breadth and depth of each
page), but validated thresholds have not been established. This dissertation presents an empirical
framework for using quantitative measures to develop pro�les of highly-rated sites. Such pro�les
could also be used to determine validated thresholds. Subsequent chapters discuss the methodology,
pro�les, and threshold derivations in more detail.

3.9 New UE Analytical Modeling Methods

3.9.1 Analytical Modeling in Performance Evaluation

Analytical modeling entails building mathematical or logical relationships to describe how
an existing or proposed system works. The analyst solves a model to predict system performance.
Such predictions are useful for studying design alternatives and for tuning system performance in
the same manner as measurement and simulation. The major di�erence is that analytical modeling
is much cheaper and faster to use albeit not as credible [Jain 1991].

Most analytical models do not adhere to a formal framework, such as queuing theory (see
Section 3.5). These models use parameterized workloads (e.g., request characteristics determined
by probability distributions) and vary in complexity. Some models may be solved with simple
calculations, while others may require the use of software.

3.9.2 Analytical Modeling in Usability Evaluation

The survey in Chapter 2 revealed analytical modeling methods for WIMP UIs, but not
for Web interfaces. GOMS analysis [John and Kieras 1996] is one of the most widely-used analyt-
ical modeling approaches, but there are two major drawbacks of GOMS and other UE analytical
modeling approaches: (i) They employ a single user model, typically an expert user, and (ii) They
require clearly-de�ned tasks. The latter is appropriate for WIMP UIs but does not work well for
information-centric Web sites for reasons previously discussed.

One way to address the �rst problem is to construct tasks representative of non-expert
users with a programming-by-demonstration facility embedded within a UIDE. CRITIQUE [Hudson
et al. 1999] is one such tool; it automatically generates a GOMS structure for a task demonstrated
within a UIDE. Constructing tasks representative of non-expert users requires the evaluator or
designer to anticipate actions of novice and other types of users. However, this information is
usually only discovered during usability testing. Thus, it has a strong non-automated component.

3.9.3 Applying PE Analytical Modeling to UE

Another approach to address both of the problems discussed above can be derived from
the PE analytical modeling framework. Recall from Section 3.3 that PE analytical models predict
system performance based on input parameters. To study di�erent usage scenarios, the analyst
simply changes the input parameters, not the underlying system model. Analytical modeling in the
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Challenge PE UE

Modeling System parameterized model parameterized model
Multiple Usage vary input parameters usage traces (real & generated),
Scenarios vary input parameters

Table 3.7: Summary of the challenges in using PE analytical modeling techniques in the UE domain. The
PE column describes how these challenges are resolved within the PE domain, and the UE column describes
potential ways to resolve these challenges within the UE domain.

UE domain is usually performed in a manner contrary to the PE counterpart (especially techniques
using GOMS). These approaches require the evaluator to change the underlying system model
rather than the input parameters to study di�erent usage scenarios. Below is a brief discussion of
challenges and potential solutions for addressing this problem; the next section presents a more in
depth solution.

It would be better to construct an abstracted model (i.e., no task details) of a UI that
encapsulates the most important system parameters for predicting performance (e.g., baseline time
to enter information in a dialog box or scan a Web page for novice and expert users). For example,
the designer could construct a basic graphical UI model to predict the number of errors for a high-
level task sequence based on the number of operations in a task, the probability of errors, and
other relevant interface parameters. The designer could then vary the input parameters (e.g., the
number of dialog boxes required by a task and that predictions are to be based on a novice user)
to the model. Each variation of input parameters corresponds to a di�erent design or di�erent user
model. This allows for quick, coarse comparison of alternative designs. Previous work on GOMS
and usability studies could be used to construct this basic UI model. Such models inherently
support ill-de�ned task sequences, since they only require speci�cation of key parameters for tasks.
Although predictions from the model would be crude, such predictions have proven to be invaluable
for making design decisions in PE [Jain 1991].

Besides constructing an abstract model, the designer must determine appropriate system
and input parameters. If an interface exists, either as an implemented system or a model, then the
designer could process generated or real usage traces to abstract the required input parameters.
If an interface or interface model does not exist, then the designer must specify required input
parameters manually.

Cognitive Task Analysis (CTA) [May and Barnard 1994] employs a modeling approach
that is similar to the one proposed. CTA requires the evaluator to input an interface description
to an underlying theoretical model for analysis. The theoretical model, an expert system based
on Interacting Cognitive Subsystems (ICS [Barnard 1987]; discussed in Section 2.9), generates
predictions about performance and usability problems similarly to a cognitive walkthrough. The
CTA system prompts the evaluator for interface details from which it generates predictions and a
report detailing the theoretical basis of predictions. Users have reported experiencing diÆculties
with developing interface descriptions. An approach based on quantitative input parameters should
simplify this process.

Table 3.7 summarizes the challenges for using analytical modeling in the UE domain as it
is used in PE. Analytical modeling is most appropriate for performing quick, coarse evaluations of
various design alternatives.
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3.9.4 Example Analytical Models

Analytical modeling is appropriate for comparing high-level designs in order to inform
design decisions. Below are example comparison scenarios for the label creation and Web site
navigation tasks.

Label Creation: A designer wants to develop a wizard for walking users through the cumbersome
label creation process. The designer is considering one wizard design that has only three steps
(dialog boxes) but requires the user to specify multiple things (e.g., various label and page
settings) during each step. The designer is also considering a design with �ve steps wherein
the user speci�es fewer things during each step. The designer wants to know which of the
designs would be easier to use.

Web Site Navigation: A designer needs to determine how to divide some content over multiple
pages. The designer is considering dividing the content over �ve large pages as well as over
eight medium pages. The designer wants to know which of the designs would be easier to
navigate, especially for �rst-time visitors.

Equation 3.1 demonstrates a way to predict task completion time; this calculation could be
embedded within a simple UI model and used to generate predictions for the label creation wizard.
This model could contain baseline or average times for completing various interface operations
(task type), such as entering information in a dialog box or performing a generic task. The model
could also incorporate high-level task complexity (complexity adj) and user (user type) models.
For example, if the designer speci�ed prediction based on a novice user, then the model could adjust
the baseline time for tasks (e.g., increase by 15%). Similarly, if the designer speci�ed that tasks were
highly complex, then the model could further adjust the baseline time. To generate predictions,
the designer need only specify the task type (dialog task), the task complexity (medium for the
�rst design and low for the second), and the user type (novice). The designer could vary input
parameters to generate predictions for other scenarios. The UI model could also include an equation
similar to Equation 3.1 for predicting the number of errors.

T = num tasks � (task time[task type] � (3.1)

complexity adj[complexity type] � user adj[user type])

Equation 3.2 demonstrates a similar way to predict navigation time; this calculation could
be embedded within a simple Web navigation model and used to generate predictions for the content
organization approaches. This model is based on the taxonomy of Web tasks discussed in [Byrne
et al. 1999]. Similarly to the previous example, the designer could specify input parameters for the
number of pages (�ve in the �rst design and eight in the second), the complexity of pages (high in
the �rst design and medium in the second), and the user type (novice). The UI model could also
include an equation similar to Equation 3.2 for predicting the number of errors.

T = num pages � ((navigate time � complexity adj[complexity type] � (3.2)

user adj[user type]) + (read time � complexity adj[complexity type] �

user adj[user type]) + (think time � complexity adj[complexity type] �

user adj[user type]))
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Assuming models of graphical interface usage and Web site navigation existed, designers
could quickly, albeit possibly not very accurately, compare designs and use predictions to inform
decisions. Using empirical data to develop system parameters should improve the accuracy of such
models.

3.10 New UE Simulation Methods

3.10.1 Simulation in Performance Evaluation

In simulation, the evaluator constructs a detailed model of a system to reproduce its be-
havior [Jain 1991]. Typically, a computer program (known as a simulator) exercises this underlying
model with various input parameters and reports resulting system performance. Unlike an analyti-
cal model, which represents a high-level abstraction of system behavior, a simulator mimics system
behavior. Hence, it is possible to use actual execution traces to drive a simulator, which is not
possible with analytical models (see below). Consequently, analysts regard simulation results as
more credible and accurate than analytical modeling results [Jain 1991]. Simulators also allow for
the study of alternative designs before actually implementing the system. This is not possible with
measurement techniques because the system must exist to capture performance data.

The underlying simulation model is one of the major di�erences among the various sim-
ulation approaches. The de�ning characteristics of these models are: the way the system evolves
(time dependent or time independent), how its parameters are generated, and the number of states
it can evolve into. In time-independent evolution, the system does not change characteristics based
on time (i.e., time is not a system parameter); the opposite is true of time-dependent evolution.
System parameters can be �xed (i.e., set to speci�c values) or probabilistic (i.e., randomly generated
from probability distributions). Finally, simulation models can have a �nite or countable number
of system states or an in�nite or uncountable number.

Another distinguishing feature of a simulator is its workload format. The workload may
be in the form of �xed or probabilistic parameters that dictate the occurrence of various system
events or an execution trace captured on a real system. Performance analysts consider trace-driven
simulations to be the most credible and accurate [Jain 1991].

Table 3.8 summarizes characteristics for two frequently-used simulation approaches, discrete-
event and Monte Carlo simulation. Discrete-event simulations model a system as it evolves over
time by changing system state variables instantaneously in response to events. Analysts use this
approach to simulate many aspects of computer systems, such as the processing subsystem, op-
erating system, and various resource scheduling algorithms. Execution traces are often used in
discrete-event simulations, since it is relatively easy to log system events.

Monte Carlo simulations model probabilistic phenomena that do not change character-
istics with time. Analysts use this approach to conduct what-if analysis (i.e., predict resulting
performance due to system resource changes) and to tune system parameters. Due to the ran-
dom nature of Monte Carlo simulations, execution traces are not usually used with this approach.
However, a Monte Carlo simulator may output an execution trace to facilitate analysis of its results.

3.10.2 Simulation in Usability Evaluation

Of the simulation methods surveyed in Chapter 2, all can be characterized as discrete-event
simulations, except for information scent modeling [Chi et al. 2000]; information scent modeling
is a close approximation to Monte Carlo simulation. Typical events modeled in these simulators
include keystrokes, mouse clicks, hand and eye movements, as well as retrieving information from



73

Simulation Simulation Type
Workload Discrete-event Monte Carlo

Parameter
Evolution time-dependent time-independent
Parameters probabilistic probabilistic
# of States �nite �nite

Trace
Evolution time-dependent |
Parameters probabilistic |
# of States �nite |

Table 3.8: Characteristics of simulation techniques in the performance evaluation domain.

Challenge PE UE

Modeling System software program, simulation UI development environment
environment

Capturing Traces record during measurement usage traces (real & generated)
Using Traces simulator reads & \executes" simulate UI behavior realistically
Multiple Usage vary simulator parameters, usage traces (real & generated)
Scenarios multiple traces

Table 3.9: Summary of the challenges in using PE simulation techniques in the UE domain. The PE column
describes how these challenges are resolved within the PE domain, and the UE column describes potential
ways to resolve these challenges within the UE domain.

memory. All of these simulation methods, except AMME (Automatic Mental Model Evaluator)
[Rauterberg and Aeppili 1995], use �xed or probabilistic system parameters instead of usage traces;
AMME constructs a petri net from usage traces.

3.10.3 Applying PE Simulation to UE

The underexplored simulation areas, discrete-event simulation with usage traces and
Monte Carlo simulation, are promising research areas for automated UE. Several techniques exist
for capturing traces or log �les of interface usage [Neal and Simons 1983; Zettlemoyer et al. 1999].
As previously discussed, tools exist for automatically generating usage traces for WIMP [Kasik and
George 1996] and Web [Chi et al. 2000] interfaces. One approach is to use real traces to drive a
detailed UI simulation in the same manner discussed for measurement; AMME provides an example
of this type of simulation. Such simulators would enable designers to perform what-if analysis and
study alternative designs with realistic usage data.

Monte Carlo simulation could also contribute substantially to automated UE. Most sim-
ulations in the UE domain rely on a single user model, typically an expert user. One solution is
to integrate the technique for automatically generating plausible usage traces into a Monte Carlo
simulator; information scent modeling is a similar example of this type of simulation. Such a sim-
ulator could mimic uncertain behavior characteristic of novice users. This would enable designers
to perform what-if analysis and study design alternatives with realistic usage data. Furthermore,
the simulation run could be recorded for future use with a discrete-event simulator.

Table 3.9 summarizes challenges for using simulation in the UE domain as it is used in
PE. The next section contains an in depth discussion of simulation solutions for the example tasks.
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3.10.4 Example Simulators

For both of the example tasks, the assumption is that the UI is in the early design stages
and consequently not available for running workloads. Hence, the designer must �rst construct a
model to mimic UI behavior for each operation. The simplest way to accomplish this would be
to expand a UI development environment (UIDE) or UI management system (UIMS) to support
simulation. These environments enable a designer to specify a UI at a high-level (e.g., a model)
and automatically generate an implementation.

Trace-driven discrete-event simulation is appropriate for simulating interface tasks such
as the label creation example. However, all of the discrete-event simulators, except AMME, do not
support executing usage traces. The drawback of AMME is that it requires log �les captured during
interface usage. The requirement of interface usage can be mitigated with a number of techniques
previously discussed for automatically generating usage traces. Such traces could be saved in a
format that a discrete-event simulator can process. In particular, traces need to be augmented
with timing information.

The major di�erence between Monte Carlo and discrete-event simulation, especially sim-
ulation driven by usage traces, is that the task sequence is not pre-determined in a Monte Carlo
simulation. This type of simulation is appropriate for the information-centric Web site example as
described in the following section.

Monte Carlo Simulator for Information-Centric Web Sites

As previously mentioned, Monte Carlo simulation is appropriate for simulating information-
centric Web sites, since this methodology does not require explicit task sequences. The survey
in Chapter 2 revealed two related simulation methods: WebCriteria's Site Pro�le [Web Criteria
1999] and information scent modeling [Chi et al. 2000]. Site Pro�le attempts to mimic a user's
information-seeking behavior within a model of an implemented site. It uses a idealist Web user
model (called Max) that follows an explicit navigation path through the site, estimates page load
and navigation times for the shortest path between the starting and ending points, and measures
content freshness and page composition (amount of text and graphics). Currently, it does not
use other user models, attempt to predict navigation paths, or consider the impact of other page
features, such as the number of colors or fonts, in estimating navigation time. This simulation
approach is more consistent with discrete-event simulation than Monte Carlo simulation, since it
uses explicit navigation paths.

Information scent modeling is more consistent with Monte Carlo simulation and was de-
veloped for generating and capturing navigation paths for subsequent visualization. This approach
creates a model of an existing site that embeds information about the similarity of content among
pages, server log data, and linking structure. The evaluator speci�es starting points in the site and
information needs (target pages) as input to the simulator. The simulation models a number of
agents (hypothetical users) traversing the links and content of the site model. At each page, the
model considers information \scent" (i.e., common keywords between an agent's goal and content
on linked pages) in making navigation decisions. Navigation decisions are controlled probabilisti-
cally such that most agents traverse higher-scent links (i.e., closest match to information goal) and
some agents traverse lower-scent links. Simulated agents stop when they reach the target pages or
after an arbitrary amount of e�ort (e.g., maximum number of links or browsing time).

The simulator records navigation paths and reports the proportion of agents that reached
target pages. The authors comparison of actual and simulated navigation paths for Xerox's corpo-
rate site revealed a close match when scent is \clearly visible" (meaning links are not embedded in
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Figure 3.9: Proposed simulation architecture.

long text passages or obstructed by images). Since the site model does not consider actual page
elements, the simulator cannot account for the impact of various page aspects, such as the amount
of text or reading complexity, on navigation choices. Hence, this approach may enable only crude
approximations of user behavior for sites with complex pages.

This section details a Monte Carlo simulation approach to address the limitations of the
Site Pro�le and information scent modeling methodologies; some of this discussion was previously
published as a poster [Ivory 2000]. Figure 3.9 depicts a proposed simulation architecture and
underlying model of information-seeking behavior based on a study by Byrne et al. [1999].

A typical design scenario entails the designer initially creating several designs (i.e., site
models) either by specifying information about each page, including the page title, metadata, page
complexity and link structure, or importing this information from an existing site. The page
complexity measure needs to consider various page features, such as the number of words, links,
colors, fonts, reading complexity, etc.; the benchmarking approach discussed in Chapter 4 as well as
the pro�les developed in Chapter 6 provides insight for automatically determining a page complexity
measure for existing sites, while estimates could be used for non-existent sites. The designer would
also specify details about the server's latency and load (server model) and users' information tasks
(e.g., destination pages and associated topics of interest). Finally, the designer would specify models
of anticipated users with key parameters, such as the reading speed, connection speed, probability
that a user will complete a task, read a page, make an error, etc. The designer could also specify
constraints in the user model, such as an upper bound on navigation time or a small screen size,
using production rules. It is possible to develop user models based on observed user behavior and
reuse these models for simulation studies.

After specifying these models, the designer would then run the simulator for each design.
Each run of the simulator would require the following steps. First, pick a starting page. There
are three di�erent models for how to do this: (1) User speci�ed, (2) Randomly chosen independent
of task (this may be used for assessing reachability), and (3) Chosen based on the task (this is
equivalent to following a link returned by a search engine, a link from an external page, or a link
from a usage trace). Next, repeat the steps below until either (a) the target page is reached; or
(b) a stopping criteria is reached (e.g., maximum navigation time, all paths from starting point
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Figure 3.10: Simulator behavior during a run.

exhausted, or maximum number of links traversed). These steps are depicted in Figure 3.10.
Assuming the starting page is already loaded in the user's browser, the steps for simulating

navigation are:

1. Read the page

� This entails computing a read time based on the following:

(a) page complexity (e.g., amount of text and reading diÆculty)

(b) page visitation (if previously viewed, then less read time)

� Update the system clock after computing the read time.

2. Make a decision

� Think time considers time for

(a) deciding if target is reached (if so, end simulation run)

(b) if not, deciding what to do next (this should be proportional to the number of
options). This entails deciding on a navigation option (e.g., following a link or using
the back button) as follows:

i. survey options (create a list of choices)

ii. compute a probability for selecting each option based on criteria described below;
this procedure is not followed for the discrete-event mode, since the choice is
dictated by the navigation trace.

iii. prune options: if the probability for an option falls below a certain threshold,
then eliminate the option.

iv. choose option: if there is more than one option remaining, then the Monte Carlo
algorithm determines the choice; this choice could be based on history (i.e., a
user model or record of previous choices) or random.

� Update the system clock after computing the think time.

3. Navigate
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� This entails making the selected page the current page and marking it as visited. It
also entails estimating a link traversal time and updating the system clock. This could
be a �xed page download time or a variable that takes into account network variations,
caching, and characteristics of the page itself.

Step 2b above requires computation of a probability for selecting a next move based on
certain criteria. These include:

1. Metadata match: do a pairwise comparison of metadata between the current and potential
page to compute a score indicating relatedness of content (it should be possible to pre-compute
these for all links and store them in a structure); do a pairwise comparison of metadata
between the target information and next page to compute another match probability; multiply
the probabilities to compute a �nal match probability.

Another possibility is to maintain a composite metadata analysis that's updated at each link.
This composite analysis would take into account metadata on the previous pages traversed
and the target information. This composite metadata could then be used in the pairwise
comparison to compute a �nal match probability.

Information foraging theory [Pirolli 1997; Pirolli et al. 1996] could be used for the metadata
match algorithm. This approach has been used to present users with relevant Web pages in
a site [Pirolli et al. 1996] and for information scent modeling [Chi et al. 2000].

2. Page visitation: if a page has been visited before, adjust selection probability according to
the user model under use.

3. User model: adjust the match probability based on the simulated user. For example, if we
are simulating a user learning by exploration, then the system state would reect the user's
current learning. If a page under consideration is consistent with a user's learning, then we
would increase the match probability. Note that this criteria is di�erent from (2), since it
a�ects pages that have not been visited before.

The simulator could report simulated navigation time along with navigation traces to
facilitate analysis and to possibly use with a discrete-event simulator. The designer could use
simulation results for multiple site designs to determine the best information architecture for a site
and to inform design improvements.

3.11 Summary

Using PE as a guiding framework provides much insight into creating new fully-automated
(i.e., does not require interface use) UE methods. The analysis showed that the major challenges to
address include: automatically generating high-level usage traces; mapping these high-level traces
into UI operations; constructing UI models; and simulating UI behavior as realistically as possible.
This chapter described solutions to these challenges for two example tasks.

The proposed simulation and analytical modeling approaches should be useful for helping
designers choose among design alternatives before committing to expensive development costs.
The proposed usability benchmarks should help assess implemented systems globally, across a wide
range of tasks.

The remainder of this dissertation focuses on using PE as a guiding framework for devel-
oping a measurement approach for assessing Web interface quality. Speci�cally, it describes the
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development of a Web interface benchmark consisting of over 150 page-level and site-level measures,
the development of statistical models of highly-rated interfaces from these quantitative measures,
and the application of these models in assessing Web interface quality and Web design guidelines.
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Chapter 4

Automated Analysis Methodology

and Tools

4.1 Introduction

This chapter presents an automated methodology for analyzing Web interfaces that lever-
ages the bene�ts of both performance evaluation and usability evaluation as discussed in the pre-
vious chapters. In the spirit of measurement techniques in the performance evaluation domain,
benchmarking in particular, the methodology entails computing an extensive set of quantitative
page-level and site-level measures. These measures can be viewed as a benchmark because they
enable objective comparison of Web interfaces. Speci�cally, these measures are used to derive sta-
tistical models of highly-rated interfaces. As is done with guideline review methods in the usability
evaluation domain, the models are then used in the automated analysis of Web pages and sites.
Unlike other guideline review methods, the guidelines are in essence derived from empirical data.
Hence, it is also possible to use the models to validate or invalidate many guidelines proposed in
the Web design literature.

This chapter and the subsequent two chapters detail the steps followed in this dissertation
towards developing an automated analysis method for Web interfaces. First, this chapter presents
two analysis scenarios as motivation for the methodology. Then, the methodology and tools are
discussed. Chapter 5 summarizes an extensive survey of Web design literature culminating in the
development of 157 page-level and site-level quantitative measures; these measures are computed
by the Metrics Computation Tool discussed in this chapter. These measures are then used to
develop statistical models of highly-rated Web interfaces in Chapter 6; these statistical models are
incorporated into the Analysis Tool discussed in this chapter.

4.2 Analysis Scenarios

4.2.1 Web Interface Evaluation

As background for the methodology presented in this chapter, Figure 4.1 depicts an anal-
ysis scenario: a Web designer seeking to determine the quality of an interface design. If the site has
already been designed and implemented, the designer could use the site as input to an analysis tool.
The analysis tool (or benchmark program) would then sample pages within the site and generate a
number of quantitative measures pertaining to all aspects of the interface. As discussed in Chapter
2, a key component of benchmarking is the ability to determine how well benchmark results com-
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Figure 4.1: A Web interface evaluation scenario.

pare to other systems or a best case. For this scenario, designs that have been rated favorably by
expert reviewers or users could be used for comparison purposes. Hence, the analysis tool could
compare the input design's quantitative measures to those for highly-rated designs. Ideally, the
analysis tool goes beyond traditional benchmarking and generates a report containing an interface
quality or usability prediction, links to similar highly-rated designs from the comparison sample,
di�erences and similarities to the highly-rated designs, and speci�c suggestions for improvements.
The designer could use these results to choose between alternative designs as well as to inform
design improvements. This analysis process could be iterated as necessary.

Similarly, the designer could use the analysis tool to explore results for other interface
designs, such as favorite sites. This process may help to educate the designer on subtle aspects
of design that may not be apparent from simply inspecting interfaces. The methodology and
tools developed in this dissertation were designed to support many aspects of this Web interface
evaluation scenario. Currently, recommending design improvements and presenting comparable
designs are not supported; future work will focus on these aspects. However, all other aspects of
the scenario are fully supported.

4.2.2 Web Interface Design

One can also imagine that a designer would want to obtain feedback on interface designs
earlier during the design phase as opposed to after implementation. If the tool supported analysis
of designs represented as images or templates, then it would be possible to support this evaluation.
In particular, the tool needs to use image processing during analysis. One could also imagine
supporting the designer even earlier in the design process, such as during the design exploration
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and re�nement phases [Newman and Landay 2000]. Given a large collection of favorably-rated sites,
the designer could explore this collection to stimulate design ideas similarly to practices employed
in the architecture domain [Elliott 2001]. During the design exploration phase, the designer could
look for ways to organize content within health sites as well as navigation schemes, for example.
During the design re�nement phase, the designer may look for good page layouts, color palettes,
site maps, navigation bars, form designs, etc.

Ideally, characteristics of Web pages and sites can be represented in a way to facilitate
easily identifying pages and sites that satisfy queries similar to the ones above. Task-based search
techniques that exploit metadata [Elliott 2001; English et al. 2001; Hearst 2000] should be helpful;
Hearst [2000] proposes an approach wherein search interfaces present users with metadata facets
for re�ning search results. Elliott [2001] presents a similar approach for exploring large online
collections of architecture images; metadata describes the content of images, including location,
architect, style, and kind of building. Metadata for Web interfaces could consist of the quantitative
measures developed in this dissertation (discussed in Chapter 5) as well as others that describe
for instance the size of the site, the type of site, page size, a page's functional type, elements on
a page (e.g., navigation bars), as well as site ratings. Many of these measures could be computed
automatically by the analysis methodology presented in this chapter. These measures could be
organized into metadata facets. Scapin et al. [2000] presents a useful and relevant framework
for organizing Web guidelines that includes a taxonomy of index keys (e.g., alignment, buttons,
downloading, headings, language, scrolling, navigation structure, and so on); this taxonomy could
be used to organize the measures into metadata facets.

4.3 Methodology

Figure 4.2 depicts the methodology developed to support the interface evaluation scenario.
Earlier work on this methodology was published in [Ivory et al. 2000; Ivory et al. 2001]. The
approach was developed mainly for information-centric Web interfaces (sites whose primary tasks
entail locating speci�c information) as opposed to functionally-oriented interfaces (sites wherein
users follow explicit task sequences). However, this approach could be used to some degree for
functionally-oriented interfaces, since these interfaces typically present information as well.

The analysis methodology consists of two distinct but related phases: 1. establishing an
interface quality baseline; and 2. analyzing interface quality. Both phases share common activities:
crawling Web sites to download pages and associated elements (Site Crawling); and computing
page-level and site-level quantitative measures (Metrics Computation). During the �rst phase, the
page-level and site-level measures coupled with expert ratings of sites are analyzed to determine
pro�les of highly-rated interfaces. These pro�les encapsulate key quantitative measures, thresholds
for these measures, and e�ective relationships among key measures; thus, representing an interface
quality baseline. During the second phase, the page-level and site-level measures are compared to
the developed pro�les and are used to assess interface quality. Sites analyzed in the latter phase are
usually not the same as the sites used to develop pro�les. Once pro�les are developed, the analysis
phase can be used on an ongoing basis. However, the interface quality baseline phase needs to be
repeated periodically (annually or semi-annually) to ensure that pro�les reect current Web design
practices.

This analysis methodology is consistent with other guideline review methods discussed in
Chapter 2. It is also consistent with benchmarking methods discussed in Chapter 3. Speci�cally, it
includes a synthetic benchmark that mimics a Web browser loading Web pages and uses an internal
driver (i.e., one program for loading and running the workload). It also includes an automated
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Figure 4.3: Architecture of tools developed to support the analysis methodology. All tools are available as
part of the WebTango Research Project.

analysis component similar to operationalized guidelines. What distinguishes this analysis approach
from other guideline review methods is: 1. the use of quantitative measures; 2. the use of empirical
data to develop guidelines; and 3. the use of pro�les (highly-rated interfaces as determined by
expert ratings) as a comparison basis.

4.4 Tools

Figure 4.3 depicts the architecture of tools developed to support the analysis methodology.
The following steps were taken to support the pro�le development discussed in Chapter 6.

1. Page were downloaded from numerous sites and stored on a Web server (site crawling).

2. Page-level and site-level measures were computed for each downloaded page and site (metrics
computation).

Pro�les developed in Chapter 6 are incorporated into the Analysis Tool. The Analysis
Tool invokes the Metrics Computation Tool to generate measures; thus, eliminating the need to
compute measures as a separate step.

This process is available to the public via separate interfaces for the site crawling and
analysis steps; future work will integrate these interfaces into one UI to support the entire process.
The interface for each tool routes requests to a server daemon (the Tool Server) for processing;
the daemon in turn forks new processes to forward requests to the appropriate backend tool (Site
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Crawler, Metrics Computation, or Analysis Tool). Both the Site Crawler and Metrics Computation
Tools interact with the HTML Parser and Browser Emulator; this component creates a detailed
representation of a Web page, including the x and y location of each page element, the width and
height of each element, the font used, foreground and background color, and other attributes. The
browser emulator determines many of the details, such as the height and width of text, by querying
the graphics environment via the X Server running on the system console.

Currently, each tool sends an email noti�cation to the client when the request completes;
this noti�cation includes a link to a tarred and gzipped �le containing the output of running the
tool. The output of running each tool is used as input to the subsequent step. For example,
pages downloaded by the Site Crawler Tool are then processed by the Metrics Computation Tool
to output page-level and site-level measures. Future work will focus on developing an interactive,
integrated tool.

The components depicted in Figure 4.3 comprise over 33,000 lines of Java, HTML, and
PERL code; they are discussed in detail in the remainder of this section. Appendix C provides
information about running the tools.

4.4.1 HTML Parser and Browser Emulator

The Multivalent Browser (developed as part of the Berkeley Digital Library Project)
[Phelps 1998; Phelps 2001] was used as a starting point for the HTML Parser and Browser Em-
ulator depicted in Figure 4.31. The Multivalent Browser enables creators of digital documents to
represent their documents at multiple layers of abstraction and to annotate them with behaviors
(e.g., actions), highlighting, and edit marks. The browser provides a means for these documents
to be distributed and viewed by others. A variety of document formats are supported { OCR
output, zip, ASCII, XML, and TeX { in addition to HTML. The browser parses HTML similarly
to the Netscape Navigator 4.75 Browser's method and supports stylesheets. It does not support
framesets, scripts, and other objects, such as applets.

The Multivalent Browser was revised extensively (�60% of code changed) to generate a
more detailed page model for use by the Site Crawler and Metrics Computation Tools. Most of
the revisions focused on enumerating frames, images, links, and objects that appear in a Web page
and annotating each node in the page's tree structure with information about how the element is
formatted (e.g., bolded, colored, italicized, etc.), whether it is a link (and if so whether it is an
internal or external link), and downloading page elements to determine their sizes. The new parser
also performs numerous corrections of HTML errors (e.g., out of order tags and tables without
<tr> or <td> tags) while processing Web pages.

The new parser and browser emulator was con�gured to simulate the Netscape Navigator
4.75 browser with default settings (fonts, link colors, menu bar, address bar, toolbar, and status
line). Currently, most monitors are 800 x 600 pixels [DreamInk 2000; Nielsen 2000]; thus, the
window size was �xed at 800 x 600 pixels. The current implementation does not support pages
that use framesets, although it does support pages with inline frames; given that Netscape 4.75
does not support inline frames, alternative HTML is typically provided in Web pages by designers
and can be processed. Future work may entail using the Mozilla or Opera parser and browser to
support more accurate page rendering, framesets, and scripts as well as to address performance
problems with the current tool.

The HTML Parser and Browser Emulator comprises approximately 20,000 lines of Java
code. The tool requires an average of 90 seconds to generate a model of a Web page. Performance
should be substantially improved by using a more robust parser and browser.

1The Multivalent Browser code was provided courtesy of Tom Phelps.
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4.4.2 Site Crawler Tool

A special Web site crawler was developed to address limitations of existing crawlers, such
as Wget [GNU Software Foundation 1999] and HTTrack [Roche 2001]. Existing crawlers rely on
path information to determine the depth of pages, which can be somewhat misleading. They are
also not selective in determining pages to download; they download advertisements and Macromedia
Flash pages, for instance. Finally, they typically attempt to mirror the directory structure of the
remote site or place all images, stylesheets, etc. into one directory; this makes it challenging to
relocate an individual page and its associated elements.

Like existing crawlers, the Site Crawler Tool is multi-threaded. In addition, the tool has
the following key features.

� Pages at multiple levels of the site are accessed, where level zero is the home page, level one
refers to pages one link away from the home page, level two refers to pages one link away
from the level one sites, and so on. The standard settings are: download the home page, up
to 15 level-one pages and 45 level-two pages (3 from each of the level-one pages).

� Links are selected for crawling such that: they are not advertisements, guestbooks, Flash
pages, login pages, chatrooms, documents, or shopping carts; and they are internal to the
site.

� Each downloaded page is stored in a directory with all images, stylesheets, frames, and
objects (e.g., scripts and applets) aggregated and stored in subdirectories. This makes it easy
to relocate pages and associated elements.

The Site Crawler Tool replaces links to images, stylesheets, and other page elements on
the remote server with the corresponding locally-stored �les. It also creates input �les for the
Metrics Computation Tool.

The Site Crawler Tool comprises approximately 1,500 lines of Java, PERL, and HTML
code; the Web interface for submitting crawling requests is implemented in HTML and PERL, while
the actual crawler is implemented in Java. The tool spends at most twelve minutes downloading
pages on a site before aborting.

4.4.3 Metrics Computation Tool

The Metrics Computation Tool is consistent with other benchmarks discussed in Chapter
3: it is portable to other platforms due to its implementation in Java; it produces quantitative
measures for comparison; and its results are reproducible (i.e., successive runs of the tool on the
same page produce the exact same results). The tool computes 141 page-level and 16 site-level
measures; these measures assess many facets of Web interfaces as discussed in Chapter 5. Numerous
heuristics were developed for computing these measures, such as detecting headings, good color
usage, internal links, and graphical ads. The tool also uses a number of auxiliary databases,
such as the MRC psycholinguistic database [Coltheart 2001] for determining spelling errors and
the number of syllables in words, and other lists of acronyms, abbreviations, medical terms, and
common (stop) words. Currently, the tool only processes English text.

The Metrics Computation Tool comprises approximately 10,500 lines of Java, PERL, and
HTML code. The Web interface for submitting requests for metrics computation is implemented in
HTML and PERL. The page-level measures are implemented in Java, while the between-page and
site-level measures are implemented in Java and PERL. The tool requires on average two minutes
to compute page-level measures per page, 30 seconds to compute between-page measures per page,
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and one minute to compute site-level measures per site. The performance bottleneck with page-
level measures is the need to traverse the page model at least three times to annotate nodes and
compute measures. During the �rst phase, the HTML Parser and Browser Emulator constructs
an initial page model. Then, the Metrics Computation Tool traverses the page model to annotate
headings, sentences, links, and to store link text. Page-level measures are computed during the
�nal pass through the revised page model.

4.4.4 Analysis Tool

The Analysis Tool encompasses several statistical models for assessing Web page and site
quality. Statistical models include decision trees, discriminant classi�cation functions, and K-means
cluster models as discussed in Chapter 6. For cluster and discriminant classi�cation models, the
top ten measures that are similar and di�erent from highly-rated interfaces are reported; acceptable
measure values are also provided. The cluster models also report the distance between measure
values on a page and measure values at the cluster centroid; the distance reects the total standard
deviation units of di�erence across all measures. Currently, the Analysis Tool does not provide
the designer with example good sites or pages; future work will focus on developing an algorithm
to provide examples. Future work will also focus on supporting automated critique or providing
explicit suggestions for improvements as well as interactive analysis.

The Analysis Tool comprises about 1,500 lines of PERL and HTML code. Each of the
pro�les discussed in Chapter 6 is implemented in PERL, while the interface for submitting analysis
requests is implemented in HTML and PERL. The tool requires one minute on average to compute
page and site quality predictions for a site.

4.5 Summary

This chapter presented an analysis methodology consistent with measurement approaches
used in the performance evaluation domain and guideline review approaches used in the usabil-
ity evaluation domain. Unlike other Web assessment techniques, this approach uses quantitative
measures and empirical data to develop guidelines for comparison purposes.

Although the tools are very robust, they su�er from several limitations. Currently, the
crawling and analysis tools are separate processes and could bene�t from being consolidated. An-
other limitation is that metrics computation is extremely compute intensive. Timings on a Sun
Enterprise 450 server revealed that it requires about four minutes on average to process each Web
page to compute page-level measures, between-page measures, and page quality assessments. An
additional minute is needed to compute site-level measures and the quality assessments. It could
take an hour to analyze the quality of a site, including all of the steps from crawling 10 pages
on the site to generating site quality assessments; this depends largely on the complexity of pages
in terms of page sizes and the number of associated elements, including images and stylesheets.
Hence, extensive optimization is needed to enable this process to occur in real time. One possibility
is to reimplement the crawling, metrics computation, and analysis processes using a robust, open
source browser, such as Mozilla or Opera. This will also enable the tools to support framesets and
script processing, since robust browsers support these elements.

The major limitation of this approach is that the quantitative measures do not capture
users' subjective preferences. For example, one study has shown that perceived download speed is
more important than actual download speed [Scanlon and Schroeder 2000a]. Although it is possible
to measure actual download speed, it may not be possible to assess perceived speed. Nonetheless,
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the methodology can be viewed as a reverse engineering of design decisions that were presumably
informed by user input.
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Chapter 5

Web Interface Measures

5.1 Introduction

There is an abundance of design recommendations, recipes, and guidelines for building
usable Web sites [Flanders and Willis 1998; Fleming 1998; Nielsen 1998c; Nielsen 1999b; Nielsen
2000; Rosenfeld and Morville 1998; Sano 1996; Schriver 1997; Shedro� 1999; Shneiderman 1997;
Spool et al. 1999]. These guidelines address a broad range of Web site and page features, from
the amount of content on a page to the breadth and depth of pages in the site. However, there is
little consistency and overlap among them [Ratner et al. 1996] making it diÆcult to know which
guidelines to adhere to. Furthermore, there is a wide gap between a heuristic such as \make the
interface consistent" and the operationalization of this advice. Finally, most recommendations have
not been empirically validated.

This chapter presents a set of 157 page-level and site-level measures based on an exten-
sive survey of design recommendations from recognized experts and usability studies. The intent
is to �rst quantify features discussed in the literature and to then determine their importance in
producing highly-rated designs. Statistical models developed in Chapter 6 should facilitate the
development of concrete, quantitative guidelines for improving Web interfaces; Chapter 10 demon-
strates this for a subset of design guidelines.

This chapter begins with a view of Web interface structure and a summary of the 157
measures. The summary is followed by detailed discussions of all quantitative measures. Appendix
C provides instructions for accessing an interactive appendix with visual depictions of all of the
measures. Chapter 6 explores the use of these measures in developing pro�les of quality Web
interfaces.

5.2 Web Interface Structure

A Web interface is a mix of many elements (text, links, and graphics), formatting of these
elements, and other aspects that a�ect the overall interface quality. Web interface design entails
a complex set of activities for addressing these diverse aspects. To gain insight into Web design
practices, Newman and Landay [2000] conducted an ethnographic study wherein they observed
and interviewed eleven professional Web designers. One important �nding was that most design-
ers viewed Web interface design as being comprised of three components { information design,
navigation design, and graphic design { as depicted in the Venn diagram in Figure 5.1. Informa-
tion design focuses on determining an information structure (i.e., identifying and grouping content
items) and developing category labels to reect the information structure. Navigation design fo-



89

Figure 5.1: Overview of Web interface design. The Venn diagram is a modi�ed version of the one in
[Newman and Landay 2000]; it is reprinted with permission of the authors.

Figure 5.2: Aspects associated with Web interface structure.

cuses on developing navigation mechanisms (e.g., navigation bars and links) to facilitate interaction
with the information structure. Finally, graphic design focuses on visual presentation and layout.
All of these design components a�ect the overall quality of the Web interface. The Web design
literature also discusses a larger, overarching aspect { experience design [Creative Good 1999;
Shedro� 2001] { the outer circle of Figure 5.1. Experience design encompasses information, naviga-
tion, and graphic design. However, it also encompasses other aspects that a�ect the user experience,
such as download time, the presence of graphical ads, popup windows, etc.

Information, navigation, graphic, and experience design can be further re�ned into the
aspects depicted in Figure 5.2. The �gure shows that text, link, and graphic elements are the
building blocks of Web interfaces; all other aspects are based on these. The next level of Figure
5.2 addresses formatting of these building blocks, while the subsequent level addresses page-level
formatting. The top two levels address the performance of pages and the architecture of sites,
including the consistency, breadth, and depth of pages. The bottom three levels of Figure 5.2 are
associated with information, navigation, and graphic design activities, while the top two levels {
Page Performance and Site Architecture { are associated with experience design.
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Metric Description

Word Count Total words on a page
Body Text % Percentage of words that are body vs. display (i.e., headings)

text
Emphasized Body Text % Portion of body text that is emphasized (e.g., bold,

capitalized or near !'s)
Text Positioning Count Changes in text position from ush left
Text Cluster Count Text areas highlighted with color, bordered regions, rules,

or lists
Link Count Total links on a page
Page Size Total bytes for the page and images
Graphic % Percentage of page bytes for images
Graphics Count Total images on a page
Color Count Total colors used
Font Count Total font face, size, bolding, and italics combinations
Reading Complexity Gunning Fog Index (ratios of words, sentences and

words with more than 3 syllables)

Table 5.1: Web page metrics used in prior studies [Ivory et al. 2000; Ivory et al. 2001]. All measures, except
Reading Complexity, were examined in both studies; Reading Complexity was not included in the second
study.

Aspects presented in Figures 5.1 and 5.2 are used to organize discussions throughout this
chapter.

5.3 Summary of Web Interface Measures

An extensive survey of Web design literature, including texts written by recognized experts
(e.g., [Fleming 1998; Nielsen 2000; Sano 1996; Spool et al. 1999]) and published user studies (e.g.,
[Bernard and Mills 2000; Bernard et al. 2001; Boyarski et al. 1998; Larson and Czerwinski 1998])
was conducted to identify key features that impact the quality and usability of Web interfaces [Ivory
et al. 2000]. HTML style guides were not consulted because they have been shown to be highly
inconsistent [Ratner et al. 1996]. Sixty two features were identi�ed from the literature, including:
the amount of text on a page, fonts, colors, consistency of page layout in the site, use of frames,
and others. As part of the analysis methodology, 157 quantitative measures were then developed
to assess many of the 62 features.

Previous work by the author showed that twelve Web interface measures { Word Count,
Body Text Percentage, Emphasized Body Text Percentage, Text Positioning Count, Text Cluster
Count, Link Count, Page Size, Graphic Percentage, Graphics Count, Color Count, Font Count,
and Reading Complexity { could be used to accurately distinguish pages from highly-rated sites
[Ivory et al. 2000; Ivory et al. 2001]. Table 5.1 describes these measures. For this dissertation,
157 quantitative measures (including nine of the original twelve measures and variations of the
other three) were developed to further assess aspects of the information, navigation, graphic, and
experience design of Web interfaces. These measures provide some support for assessing 56 of the 62
features (90%) identi�ed as impacting usability in the Web design literature. Measures developed
in previous studies assessed less than 50% of these 62 features.

Guidelines provided in Section 3.4.1 for determining performance metrics were considered
in developing the 157 measures. Speci�cally, a subset of measures with the following characteristics
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were implemented.

� Low Variability: measures are not a ratio of two or more variables; there is one exception
to this rule { the average number of words in link text { which was developed to assess a
feature reported in the literature.

� Nonredundancy: two measures do not convey essentially the same information.

� Completeness: measures reect all aspects of the Web interface (i.e., information, naviga-
tion, graphic, and experience design).

A sample of fourteen Web pages with widely di�ering characteristics was used to validate
the implemented measures. The actual value of each measure was manually computed and then
used to determine the accuracy of computed results. For each page and each measure, the number
of accurate hits and misses as well as the number of false positives and negatives were determined
as described below.

Accurate Positive: an element is counted as it should have been counted (e.g., an actual word
is counted by the tool as a word).

Accurate Negative: an element is not counted and it should not have been counted (e.g., an
actual display word is not counted as a body word). This is relevant for discriminating
measures that can label an object more than one way, such as deciding whether a word is a
heading, body, or text link word.

False Positive: an element is counted and it should not have been counted (e.g., an actual body
word is counted as a display word).

False Negative: an element is not counted and it should have been counted (e.g., an actual body
word is not counted as a body word).

False positives and false negatives typically occur for discriminating measures (i.e., ones
that entail deciding between two or more options). After counting the four types of hits and misses
for a measure on a page, the following accuracies were then computed for the measure.

Hit Accuracy: the ratio of the number of accurate positives to the sum of the number of accurate
positives and false negatives. False positives are not included in this computation, since they
represent inaccurate hits.

Miss Accuracy: the ratio of the number of accurate negatives to the sum of the number of
accurate negatives and false positives. False negatives are not included in this computation,
since they represent inaccurate misses.

The average hit and miss accuracies for a measure is then the average hit and miss ac-
curacies across all sample pages. Finally, the overall accuracy is computed over the average hit
and miss accuracies. Metric tables in this chapter report the average hit, average miss, and overall
accuracy for each measure across the 14-page sample. With a few exceptions, all of the measures
are highly accurate (>84% overall accuracy across the sample). The least accurate measures {
text positioning count (number of changes in text alignment from ush left) and text and link
text cluster counts (areas highlighted with color, rules, lists, etc.) { require image processing as
discussed later.
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For measures developed in this chapter, the HTML Parser and Browser Emulator (see
Chapter 4) was con�gured to simulate the Netscape Navigator 4.75 browser with default settings
(fonts, link colors, menu bar, address bar, toolbar, and status line). The window size was �xed at
800 x 600 pixels.

The remainder of this chapter presents the 62 features derived from the literature survey,
the measures developed to assess these features, and a short discussion of speci�c guidance from
the literature when available. The discussion reects the hierarchy presented in Figure 5.2. In each
section, summary tables depict the measures, the Web interface aspects (information, navigation,
graphic, and experience design) assessed by the measures, and their accuracy as described above.
Two classes of measures were developed: discriminating (deciding between two or more options) and
non-discriminating (a count). For discriminating measures, hit and miss accuracies are reported;
they are not reported for non-discriminating measures. The overall accuracy is reported for both
discriminating and non-discriminating measures.

5.4 Text Element Measures

Tables 5.2, 5.3, and 5.4 summarize 31 text element measures derived from the literature
survey and discussed in this section. These measures provide insight about the following Web page
features.

1. How much text is on the page?

2. What kind of text is on the page?

3. How good is the text on the page? Good in this context refers to whether or not the text
contains an abundance of common words typically referred to as stop words. Good words are
not stop words.

4. How complex is the text on the page? Complexity refers to the reading level required to
understand the text as determined by the Gunning Fog Index [Gunning 1973].

5.4.1 Text Element Measures: Page Text

The text or visible (legible) words on a Web page has been discussed extensively in the
literature [Flanders and Willis 1998; Landesman and Schroeder 2000; Nielsen 2000; Schriver 1997;
Stein 1997] and is considered a major component of the information design. An analysis of experts'
ratings of Web sites submitted for the Webby Awards 2000 revealed that content was by far the
best predictor of ratings [Sinha et al. 2001]. The literature includes the following heuristics.

� Users prefer pages with more content as opposed to breaking content over multiple pages
[Landesman and Schroeder 2000].

� Keep text short; use 50% less text than in print publications [Nielsen 2000].

� Break text up into smaller units on multiple pages [Flanders and Willis 1998; Nielsen 2000].

As is often found in the literature, the �rst guideline contradicts the other two. Fur-
thermore, there is no concrete guidance on how much text is enough or too much. Thus, a Word
Count measure was developed to assess the amount of text on the page. The presence of invisible
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How much text is on the page?
Word Count Total visible words

p
{ { 99.8%

Page Title Number of words
p p

{ { 100.0%
Word Count in the page's title

(max of 64 chars)
Overall Page Number of words

p p
{ { 100.0%

Title Word in the page's title
Count (no char max)
Invisible Number of

p
{ { 100.0%

Word Count invisible words
Meta Tag Number of words

p
{ { 100.0%

Word Count in meta tags

What kind of text is on the page?
Body Word Words that are

p
99.9% 99.5% 99.8%

Count body text (i.e., not
headings or links)

Display Words that are
p

97.5% 100.0% 98.7%
Word Count display text

(i.e., headings
that are not links)

Display Link Words that are
p p

75.5% 100.0% 87.7%
Word Count both link text

and headings
Link Word Words that are

p p
99.7% 99.5% 99.6%

Count link text and
are not headings

Average Average number
p

{ { 100.0%
Link Words of words in link

text
Graphic Number of words

p
{ { 100.0%

Word Count from <img> alt
attributes

Ad Word Number of words
p

100% 100% 100%
Count possibly

indicating ads
(`advertisement'
or `sponsor')

Exclamation Number of
p

{ { 100.0%
Point Count exclamation

points
Spelling Number of

p
100.0% 99.9% 100.0%

Error Count misspelled words

Table 5.2: Summary of text element measures (Table 1 of 3). The aspects assessed { information design
(ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit

and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How good is the text on the page?
Good Word Total good visible

p
100.0% 100.0% 100.0%

Count words (i.e., not
stop words)

Good Body Good body text
p

100.0% 100.0% 100.0%
Word Count words
Good Good display

p
100.0% 100.0% 100.0%

Display text words
Word Count
Good Good combined

p p
100.0% 100.0% 100.0%

Display display and link
Link Word text words (i.e.,
Count not stop words

or `click')
Good Link Good link text

p p
100.0% 99.7% 99.8%

Word Count words
Average Average number

p
100.0% 100.0% 100.0%

Good Link of good link
Words text words
Good Number of good

p
100.0% 100.0% 100.0%

Graphic words from
Word Count <img> alt

attributes
Good Page Number of good

p p
100.0% 100.0% 100.0%

Title Word page title words
Count (max of 64 chars)
Overall Total number of

p p
100.0% 100.0% 100.0%

Good Page good page title
Title Word words (no char
Count max)
Good Meta Number of good

p
100.0% 100.0% 100.0%

Tag Word meta tag words
Count

Table 5.3: Summary of text element measures (Table 2 of 3). Good in this context refers to the use of
words that are not stop words or the word `click' in the case of text links. The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How complex is the text on the page?
Reading Gunning Fog

p
{ { 97.6%

Complexity Index computed
over prose

Overall Gunning Fog
p

{ { 97.9%
Reading Index computed
Complexity over all text
Fog Word Number of prose

p
99.5% 100.0% 99.7%

Count words (for
Reading
Complexity)

Fog Big Number of big
p

94.9% 97.6% 96.2%
Word Count prose words (for

Reading
Complexity)

Overall Fog Number of big
p

96.5% 98.5% 97.5%
Big Word words (for
Count Overall

Reading
Complexity)

Fog Number of
p

{ { 98.6%
Sentence sentences (for
Count Reading

Complexity)
Overall Fog Number of

p
{ { 98.6%

Sentence sentences (for
Count Overall

Reading
Complexity)

Table 5.4: Summary of text element measures (Table 3 of 3). Complexity in this context refers to the
reading level required to understand the text; this is determined by the Gunning Fog Index [Gunning 1973].
The aspects assessed { information design (ID), navigation design (ND), graphic design (GD), and experience
design (ED) { are denoted with a

p
. Hit and miss accuracies are only reported for discriminating measures.
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words (i.e., words formatted with the same foreground and background colors, thus making them
illegible) is also measured, since such words may indicate spamming (techniques used to inuence
search engine ranking). These counts only include words in the static HTML and do not include
words embedded in images, applets, and other objects. Image processing techniques are required
to count words in these cases.

Word Count was examined in both of the prior metric studies [Ivory et al. 2000; Ivory
et al. 2001] and was shown to be a key measure for distinguishing highly-rated pages in the second
study. Furthermore, dividing the sample into three groups { low word count (average of 66 words),
medium word count (average of 230 words), and high word count (average of 820 words) { revealed
several key di�erences between highly-rated and poorly-rated Web pages.

5.4.2 Text Element Measures: Page Title

A page's title is also an important element of the information design [Berners-Lee 1995;
Flanders and Willis 1998; Nielsen 2000]. Speci�c guidance includes the following.

� Use no more than 64 characters [Berners-Lee 1995].

� Use 2{6 words (40{60 characters) [Flanders and Willis 1998].

� Use di�erent page titles for each page [Nielsen 2000].

To assess the number of words used in page titles, two measures { Page Title Word Count
and Overall Page Title Word Count { were developed. The di�erence between these two measures is
a restriction of 64 characters on the Page Title Word Count but not on the Overall Page Title Word
Count. Prior experience with the Page Title Word Count revealed that extremely long page titles
(e.g., >200 words) were sometimes used, possibly as a spamming technique. However, long titles
are also used legitimately to make search engine results more readable; further analysis of good and
poorWeb pages needs to be conducted to know for certain that spamming is used. Nonetheless, only
a portion of these words are actually visible in a Web browser; thus, the guideline from the HTML
2.0 speci�cation (64 maximum characters) [Berners-Lee 1995] is used to determine the number of
visible page title words. Deviations between these two measures may indicate spamming. To assess
whether page titles varied between pages within a site, scent quality and page title consistency
measures (discussed in Sections 5.12.7 and 5.13.1) were implemented.

5.4.3 Text Element Measures: Page Abstract

Although a page's abstract (i.e., meta tags used for search engines) is not a visible page
feature, it does a�ect the experience design, especially when searching is used to locate information.
Nielsen [2000] suggests that Web designers use meta tags with less than 150{200 characters on the
page. To assess the use of meta tags, a Meta Tag Word Count was developed. It includes words
used in both the description and keyword attributes of the meta tag.

5.4.4 Text Element Measures: Body Text

The interplay of display (i.e., headings) and body text a�ects users ability to scan the
information on a page [Nielsen 1997; Schriver 1997]. Ideally, meaningful headings and sub-headings
are used to help users locate speci�c information [Nielsen 1997]. Although no speci�c guidance was
provided with respect to the amount of body vs. display text in a Web page, a Body Word Count
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and several Display Word Count measures were developed to assess the balance between these two
features.

Detecting headings within a Web page is not a straight-forward activity. Prior experience
revealed that only a small fraction of Web pages actually use the HTML header tags (<h1>, <h2>,
<h3>, etc.) to format headings; the majority of pages use font and stylesheet tags. Hence, several
heuristics were developed to detect headings; heuristics are based on the sample of fourteen Web
pages used throughout metrics development. For example, if text is bolded, not embedded in other
non-bolded text, and is not in a text link, then it is considered to be a heading. Another heuristic
examines whether text is emphasized in some other manner (e.g., italicized or colored), is not
embedded in other non-emphasized text, is formatted with a font size greater than twelve points,
and is not in a text link to determine whether the text is a heading. The �xed font size of 12
points is not ideal, because it would be more appropriate to use font sizes used in the document as
a baseline. The heuristics detected headings in the Web page sample with 98.7% overall. Similar
heuristics were developed for detecting link headings with 87.7% overall accuracy; the hit accuracy
was only 75.5%, while the miss accuracy was 100%. Using image processing techniques on an image
of a Web page may result in more accurate detection of link headings.

The two prior metric studies used a Body Text Percentage measure (ratio of body text
words to all words on the page). Both studies showed this measure to be important for distinguish-
ing highly-rated pages. Despite its importance, this measure was abandoned because it directly
violates the low variability (not a ratio of two or more measures) guidance for performance met-
rics. Analysis of the Word and Body Word Counts can provide the same insight as the Body Text
Percentage measure.

5.4.5 Text Element Measures: Link Text

Words used in text links a�ect both the information and navigation design. Although
the total number of link text words is measured by the Rating Game tool [Stein 1997], no speci�c
guidance was found in the literature with respect to the appropriate amount of link text on a page.
Two link text measures were developed { Link Word Count and Display Link Word Count. The
latter measure reports the number of link text words that are also headings.

5.4.6 Text Element Measures: Link Text Length

The previous section discussed the total number of link text words, but this section focuses
on the number of words in a text link. The literature states that the number of words used in
each text link a�ects the information design and the navigation design in particular [Chi et al.
2000; Nielsen 2000; Sawyer and Schroeder 2000; Spool et al. 1999]. Speci�c guidance includes the
following.

� Use 2{4 words in text links [Nielsen 2000].

� Use links with 7{12 \useful" words [Sawyer and Schroeder 2000].

These two guidelines are obviously contradictory. Hence, an Average Link Words measure
was developed to assess the length of link text. This measure is the ratio of the total number of
text link words (i.e., Link and Display Link Word Counts) to the number of text links. This
ratio violates the low variability guidance for performance metrics; however, the measure was
implemented because it allows for direct assessment of a feature with contradictory guidance in
the literature. The second guideline includes a quali�er { \useful" words { this is assessed to some
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degree with a complementary measure, Average Good Link Words, which is discussed in Section
5.4.12.

5.4.7 Text Element Measures: Content Percentage

Nielsen [2000] suggests that the portion of the Web page devoted to content should rep-
resent 50{80% of the page. The content percentage can be computed by highlighting the portion
of the page devoted to content and then determining what percentage of the page it represents.
It is diÆcult to compute this percentage as prescribed without using image processing techniques.
Instead, the following indirect measures were developed: the total number of words (Section 5.4.1);
and the total number of words used for text links (Section 5.4.5).

5.4.8 Text Element Measures: Navigation Percentage

Similarly to the content percentage, Nielsen [2000] suggests that the portion of the Web
page devoted to navigation should represent 20% of the page; this percentage should be higher for
home and intermediate pages. The navigation percentage can be computed by highlighting the
portion of the page devoted to navigation and then determining what percentage of the page it
represents. It is diÆcult to compute this percentage as prescribed without using image processing
techniques. Several indirect measures were developed, including: the total number of links of
various kinds (e.g., text and graphic; Section 5.5.1); and the total number of words used for text
links (Section 5.4.5).

5.4.9 Text Element Measures: Exclamation Points

The use of exclamation points in the page text has been discussed in the literature [Flan-
ders and Willis 1998; Stein 1997]. The consensus is to minimize the use of exclamation points, since
they are equivalent to blinking text [Flanders and Willis 1998]. The literature does not provide
guidance on an acceptable number of exclamation points. Hence, an Exclamation Point Count was
developed; this measure includes exclamation points in body, display, and link text.

5.4.10 Text Element Measures: Typographical Errors

As part of the Web Credibility Project at Stanford University [Kim and Fogg 1999; Fogg
et al. 2000], a survey of over 1,400 Web users was conducted to identify aspects that impact the
credibility of Web interfaces. Survey results showed that an amateurism factor, which includes the
presence of spelling and other typographical errors, was negatively correlated with credibility [Fogg
et al. 2000]. A follow-up controlled study further established that the presence of typographical
errors decreased credibility [Kim and Fogg 1999]. The obvious guidance from this research is to
avoid typographical errors. Flanders andWillis [1998] also suggest that Web designers avoid making
typographical mistakes on pages.

The Metrics Computation Tool assesses one type of typographical error { spelling errors
(English only). An extensive dictionary of English words, computer, Internet, medical terms,
acronyms, and abbreviations, including the MRC psycholinguistic database [Coltheart 2001], is
used for checking spelling errors. One limitation of the spelling error measure is that it ignores
capitalized words, since they may be proper nouns typically not found in dictionaries. Hence,
the number of spelling errors may be underreported. Another limitation is that it may count
jargon words as spelling errors; thus, inating the number of spelling errors. Other typographical
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errors, such as misplaced punctuation, are not assessed with quantitative measures, since more
sophisticated computational linguistics is required.

5.4.11 Text Element Measures: Readability

The literature survey revealed numerous discussions of the readability or required reading
level of text [Berners-Lee 1995; Flanders andWillis 1998; Gunning 1973; Nielsen 2000; Schriver 1997;
Spool et al. 1999]. Spool et al. [1999] determined that the Gunning Fog Index (GFI) [Gunning 1973]
was the only readability measure correlated with Web interfaces. To compute this index, a passage
containing at least 100 words needs to be selected from the page. Then, the number of words (Fog
Word Count), the number of words with more than two syllables (Fog Big Word Count), and the
number of sentences (Fog Sentence Count) needs to be computed. Equation 5.1 demonstrates how
to compute the Gunning Fog Index from these measures.

GFI =

�
Fog Word Count

Fog Sentence Count
+

Fog Big Word Count

Fog Word Count
� 100:0

�
� 0:4 (5.1)

This measure was originally developed for printed documents; however, Spool et al. [1999]
discovered that this measure correlated with the scannability of Web pages. Speci�c guidance for
the GFI in both the print and Web domains is provided below. As can be expected, guidance is
contradictory in the two domains.

� A lower Gunning Fog Index of 7{8 is ideal for printed documents [Gunning 1973]; only a 7th
or 8th grade education is required to read them.

� A higher Gunning Fog Index (�15.3) is ideal for Web pages; pages that are reported to require
a college education to read them facilitate scanning [Spool et al. 1999].

Two reading complexity measures were developed { the Reading Complexity computed
over prose text (sentences) and the Overall Reading Complexity computed over all of the text,
including links and bulleted lists. Prior experience with computing the Gunning Fog Index over
all of the text suggested that this measure was not truly a measure of reading complexity, rather
it measured the degree to which text is broken up to facilitate page scanning [Ivory et al. 2000;
Spool et al. 1999]. Hence, the reading complexity measure computed over just the prose text was
developed to be more consistent with the intended use of the Gunning Fog Index.

All of the measures used in computing the reading complexity measures, such as the
number of sentences and big words, are reported by the Metrics Computation Tool. The number of
big words is determined by �rst looking up words in the MRC psycholinguistic database [Coltheart
2001], which contains the number of syllables for over 100,000 words. If the word is not in the
database, then the algorithm used by the UNIX style program (counting consonant vowel pairs)
[Cherry and Vesterman 1981] is used.

A previous study of the reading complexity computed over all of the page text showed
this measure to be important for distinguishing unrated (from sites that have not been identi�ed
by reputable sources as exhibiting high quality) and rated (from sites that have been identi�ed by
reputable sources as exhibiting high quality) pages [Ivory et al. 2000]; this study is discussed briey
in Chapter 6. The reading complexity of rated pages was consistent with the second guideline
presented above. The study also showed that reading complexity values above 15.8 were not
associated with rated pages; thus, there appears to be a threshold above which higher reading
complexity (i.e., reported as more diÆcult to read) may impede scanning.
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5.4.12 Text Element Measures: Information Quality

The literature extensively discusses ways to improve the quality of information (e.g., con-
tent appropriateness, relevance, language, tone, and freshness) [Flanders and Willis 1998; Nielsen
2000; Rosenfeld and Morville 1998; Schriver 1997; Spool et al. 1999]. Speci�c guidance includes the
following.

� Support eÆcient, easy �rst-time use (i.e., logical grouping of content and organization) [Rosen-
feld and Morville 1998].

� Update content often [Flanders and Willis 1998; Nielsen 2000].

It is extremely diÆcult to assess the quality of information without user input. Hence,
the implemented measures provide only limited coverage of the broad spectrum of aspects that
inuence information quality. Speci�cally, the Metrics Computation Tool computes the number
of good words, link words, display words, body words, page title words, meta tag words, and so
on. A word is determined to be good if it is not a stop word; an extensive list of 525 common
English words is used for this assessment. For determining good link words, the word `click' is also
considered as a stop word. None of the quantitative measures assess the guidelines depicted above.

5.5 Link Element Measures

Table 5.5 summarizes six link element measures derived from the literature survey and
discussed in this section. (These measures are di�erent than the link text measures presented in
the previous section.) These measures provide insight about the following Web page features.

1. How many links are on the page?

2. What kind of links are on the page?

5.5.1 Link Element Measures: Links

Links are an essential element of the navigation design and are discussed extensively
in the literature [Flanders and Willis 1998; Furnas 1997; Larson and Czerwinski 1998; Rosenfeld
and Morville 1998; Sano 1996; Schriver 1997; Spool et al. 1999; Zaphiris and Mtei 1997]. Several
usability studies have been conducted to provide the following guidance about the breadth (i.e.,
how many links are presented on a page), depth (i.e., how many levels must be traversed to �nd
information), and other aspects of the navigation structure.

� Use moderate levels of breadth with minimal depth (e.g., two levels) in the information
architecture [Larson and Czerwinski 1998].

� Minimize depth [Zaphiris and Mtei 1997].

� A large number of links impedes navigation [Spool et al. 1999].

� Avoid broken links [Flanders and Willis 1998; Nielsen 2000; Spool et al. 1999].
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How many links are on the page?
Link Count Total number of

p
{ { 99.8%

links

What kind of links are on the page?
Text Link Number of text

p p
99.7% 100.0% 99.9%

Count links
Link Number of image

p p
100.0% 100.0% 100.0%

Graphic links
Count
Page Link Number of links

p
100.0% 100.0% 100.0%

Count to other sections
(i.e., anchors)
within the page

Internal Link Number of links
p

100.0% 100.0% 100.0%
Count that point to

destination
pages within the
site

Redundant Number of links
p

100.0% 100.0% 100.0%
Link Count that point to the

same destination
page as other
links on the page

Table 5.5: Summary of link element measures. The aspects assessed { information design (ID), navigation
design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit and miss

accuracies are only reported for discriminating measures.
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A Link Count was developed to assess the total number of links (graphical and text) on a
page. This measure captures the breadth of links on a page, but it does not assess the depth of links.
It was examined in both of the prior metric studies and found to be important for distinguishing
highly-rated pages. The maximum page depth measure (discussed in Section 5.13.2) provides some
insight into navigation structure. For instance, the deepest level that the crawler could traverse on
the site (i.e., not �nd pages that hadn't been seen before) may reect the depth of the information
architecture.

Broken links have been mentioned repeatedly in the literature as a usability problem.
Given that there are numerous tools for detecting broken links, such as Weblint [Bowers 1996], no
measure was developed.

5.5.2 Link Element Measures: Text Links

Text links are considered to be the most important type of links in the literature [Flanders
and Willis 1998; Sawyer and Schroeder 2000; Scanlon and Schroeder 2000c; Spool et al. 1999]. The
consensus in the literature is that text rather than image links should be used [Flanders and Willis
1998; Spool et al. 1999]. A Text Link Count was developed to measure the number of text links on
a Web page.

5.5.3 Link Element Measures: Link Graphics

The literature extensively discusses the use of graphical links [Flanders and Willis 1998;
Sano 1996; Sawyer and Schroeder 2000; Scanlon and Schroeder 2000c; Spool et al. 1999]. Speci�c
guidance includes the following.

� Avoid using graphical text links; they are typically ignored [Sawyer and Schroeder 2000;
Spool et al. 1999] or may impede navigation [Scanlon and Schroeder 2000c; Spool et al. 1999].

� Use corresponding text links [Flanders and Willis 1998; Sano 1996].

A Link Graphic Count was developed to assess the number of links that are images. A
similar measure was computed for the number of graphics that are also links and is discussed in
Section 5.6.2. Although the Link Graphic Count measures the use of graphical links, there is no
direct measure of whether equivalent text links is provided. However, the Redundant Link Count
(discussed in Section 5.5.8) may provide some indirect insight about the use of equivalent text links.

5.5.4 Link Element Measures: Within-Page Links

The use of within-page links or links that point to other areas in the same page has
been found to be problematic [Nielsen 2000; Sawyer and Schroeder 2000; Spool et al. 1999]. The
consensus is that these types of links should be avoided, since they may be confusing [Nielsen 2000;
Sawyer and Schroeder 2000; Spool et al. 1999]. A Page Link Count was developed to report the
presence of within-page links.

5.5.5 Link Element Measures: External Links

The use of external links or links that point to other sites has also been reported as
potentially problematic [Nielsen 2000; Spool et al. 1999]. One rationale is that users may not
be aware that they left the original site [Spool et al. 1999]. Nielsen [1997] presents the contrary
view that external links increase credibility based on a study of nineteen users reading Web pages.
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Nielsen [2000] suggests that Web designers use a di�erent link color scheme to signify external links
and to better inform users that they are leaving the site.

An Internal Link Count was developed to measure the use of internal as opposed to
external links. This measure considers links that point to the same domain (e.g., www1.cnet.com
and www2.cnet.com) as being internal. The di�erence between the Link and Internal Link Counts
lies in the number of external links. No measure was developed to determine if di�erent color
schemes are used for internal and external links.

5.5.6 Link Element Measures: Embedded Links

Embedding links within text on the page has been discussed in the literature [Rosenfeld
and Morville 1998; Spool et al. 1999]. The consensus is that Web designers should avoid surrounding
links with text, since they are diÆcult to scan [Rosenfeld and Morville 1998; Spool et al. 1999]. No
measure was developed to detect the presence of embedded links, since image processing is required
for accurate detection.

5.5.7 Link Element Measures: Wrapped Links

Spool et al. [1999] suggests that wrapped links or links spanning multiple lines should be
avoided. During usability studies, users interpreted each line of a wrapped link as being a separate
link versus all lines comprising a single link. No measure was developed to detect the presence
of wrapped links, since it requires an accurate simulation of browser rendering. Use of a browser
that can more accurately represent the layout of page elements, such as Mozilla or Opera, would
facilitate detection of wrapped links.

5.5.8 Link Element Measures: Redundant Links

The surveyed literature espouses the value of redundant or multiple links to the same
content [Sawyer and Schroeder 2000; Spool et al. 1999; Spool et al. 2000], while one study of
di�erent types of links (e.g., neighborhood, parent, index, etc.) found redundant links to confuse
users within cyber shopping malls [Kim and Yoo 2000]. Speci�c guidance includes the following.

� Use multiple links to the same content with appropriate scent in each area [Spool et al. 2000].

� Use di�erent forms for repeated links (e.g., text, graphical text, or image) [Sawyer and
Schroeder 2000].

� Redundant links may cause confusion [Kim and Yoo 2000].

A Redundant Link Count was developed to assess the use of repeated links. No measure
was implemented to detect whether di�erent forms of links are used or whether di�erent link text
is used to label links that point to the same location.

5.5.9 Link Element Measures: Navigation Quality

Much has been said about many aspects of the navigation structure, such as the clarity of
links, the use of scent (hints about the contents on a linked page), the relevance of links, and the use
of e�ective navigation schemes [Chi et al. 2000; Fleming 1998; Furnas 1997; Larson and Czerwinski
1998; Miller and Remington 2000; Nielsen 2000; Rosenfeld and Morville 1998; Sawyer et al. 2000;
Spool et al. 1999; Spool et al. 2000]. Speci�c guidance on these aspects includes the following.
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� Use clear headings with related links (i.e., link clustering) to enhance scent [Spool et al. 2000].

� Expose multiple levels of the information architecture (i.e., link clustering with headings)
[Sawyer et al. 2000].

� E�ective navigation requires small pages (views), few clicks between pages, and strong scent
[Furnas 1997].

� Weak scent (i.e., ambiguous link text) impedes navigation [Chi et al. 2000; Miller and Rem-
ington 2000; Spool et al. 1999; Spool et al. 2000].

� Similar link text across links impedes navigation [Spool et al. 1999].

� Do not use a shell strategy (i.e., �xed navigation bar content); use navigation bars at the top
and bottom of pages vs. down the sides [Spool et al. 1999].

� Avoid using `Click Here' for link text [Nielsen 2000].

� Support multiple modes of �nding information (i.e., directed searching and browsing) [Flem-
ing 1998; Rosenfeld and Morville 1998].

� The navigation scheme should be easy to learn, consistent, eÆcient, and relevant to the type
of site (i.e., entertainment and information sites use di�erent navigation schemes) [Fleming
1998].

� Use breadcrumbs (i.e., displaying a navigation trail) vs. long navigation bars [Nielsen 2000].

Many of these suggestions are diÆcult to measure in an automated manner. However,
some guidelines, such as the number of good link words (excludes the word `click'; Section 5.4.12),
support for searching (Section 5.10.7), use of link clustering (Section 5.7.7), and the consistency of
link elements and formatting (Section 5.13.1), are measured. Several site architecture measures,
such as the maximum page depth and breadth (as determined by the crawling depth and breadth;
Section 5.13.2), may also provide some insight about the navigation structure.

5.6 Graphic Element Measures

Table 5.6 summarizes six graphic element measures developed and discussed in this section.
These measures assess the following features of Web pages.

1. How many graphics are on the page?

2. What kind of graphics are on the page?

5.6.1 Graphic Element Measures: Graphics

Images are a key element of the graphic design, and image use is discussed extensively in
the literature [Amb�uhler and Lindenmeyer 1999; Flanders and Willis 1998; Nielsen 2000; Sano 1996;
Schriver 1997; Spool et al. 1999; Stein 1997]. Scanlon and Schroeder [2000c] identi�ed and provided
guidance for the following four categories of graphics.

� Content Graphics - provide content (i.e., see vs. read); users typically do not complain
about the download speed of content graphics.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How many graphics are on the page?
Graphic Total number

p
{ { 100.0%

Count of images

What kind of graphics are on the page?
Redundant Number of

p
100.0% 100.0% 100.0%

Graphic images that
Count point to the same

image �les as
other images

Graphic Number of
p p

100.0% 100.0% 100.0%
Link Count images that are

links
Animated Number of

p
100.0% 100.0% 100.0%

Graphic animated images
Count
Graphic Ad Number of

p
97.9% 96.1% 97.0%

Count images that
possibly indicate
ads

Animated Number of
p

97.2% 99.9% 98.6%
Graphic Ad animated images
Count that possibly

indicate ads

Table 5.6: Summary of graphic element measures. The aspects assessed { information design (ID), naviga-
tion design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit and miss

accuracies are only reported for discriminating measures.
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� Navigation Graphics - help users navigate; these should typically be avoided.

� Organizer Graphics - bullets, rules, etc. that direct users' attention on the page; these are
typically ignored by users.

� Ornamental Graphics - logos and other images that ornament the page; these images are
typically the least e�ective and most costly in terms of download speed.

In some cases, one graphic may serve multiple roles. Furthermore, the role of a graphic
may not be apparent from looking at it. Regardless of the role of graphics, the consensus in the
literature is that the number of images needs to be minimized to improve download speed. Nielsen
[2000] also suggests that text rendered as images (one type of content graphic) should be eliminated
except for image captions. A Graphic Count measure was developed to quantify the use of images
on a Web page. Text rendered as images is not assessed, since it would require image processing.
Another limitation of this measure is that it includes images that may not be visible on the page,
such as spacer images; image processing techniques are required to accurately report the number
of visible images on the page. The use of navigation graphics is assessed with the Graphic Links
measure discussed in the following section. Although the use of organizer and ornamental graphics
is not directly measured, the developed Redundant Graphic Count (repeated use of image �les)
may provide an indirect measurement of these types of images.

The Graphic Count measure was examined in both prior metric studies. The �rst study
determined that rated pages contained more images than pages that were not rated; inspection of a
random sample of pages revealed that this higher number of graphics was attributable to organizer
graphics. The second study found that in all cases, highly-rated pages contained fewer images.
(Results from the second study are more de�nitive because they are based on analysis of expert
ratings rather than rated and unrated sites). Even though rated pages contained more images in
the �rst study, graphic count was not a key predictor of rated or highly-rated pages in either study.

5.6.2 Graphic Element Measures: Graphical Links

The use of images as links is also discussed in the literature [Flanders and Willis 1998;
Sawyer and Schroeder 2000; Scanlon and Schroeder 2000c; Spool et al. 1999]. Speci�c guidance
about graphical links is below. This guidance was also reported for the Link Graphic Count
discussed in Section 5.5.3. The Graphic Link Count was developed to quantify the use of images
as links. This measure varies from the Link Graphic Count in Section 5.5.3 when image maps are
used on pages, since every area of an image map is counted as a separate image link.

� Avoid using graphical text links; they are typically ignored [Sawyer and Schroeder 2000;
Spool et al. 1999] or may impede navigation [Scanlon and Schroeder 2000c; Spool et al. 1999].

� Use corresponding text links [Flanders and Willis 1998; Sano 1996].

5.6.3 Graphic Element Measures: Graphical Ads

Several literature sources discuss the presence of graphical ads on Web pages [Kim and
Fogg 1999; Klee and Schroeder 2000; Nielsen 2000]. Speci�c guidance includes the following.

� Ads a�ect the user experience; integrate ads with content [Klee and Schroeder 2000].

� Usability dictates that ads should be eliminated [Nielsen 2000].
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� Ads increase credibility [Kim and Fogg 1999].

The guidelines are obviously contradictory. Kim and Fogg [1999] describe credibility as
a \high level of perceived trustworthiness and expertise," which appears to be related to usability,
although this link has yet to be established. A controlled study wherein 38 users rated Web pages
(with and without graphical ads) on credibility showed that pages with graphical ads were rated as
more credible than those without graphical ads. A Graphic Ad Count was developed to gain more
insight about the use of ads on Web pages. This measure uses a number of heuristics (e.g., whether
the image is a link to a known advertising agency or contains words indicative of advertisement in
the URL) to detect the presence of ads with 97% overall accuracy.

5.6.4 Graphic Element Measures: Animation

The use of animated images and scrolling text is often debated in the literature [Flanders
and Willis 1998; Nielsen 2000; Spool et al. 1999]. Speci�c guidance on animation includes the
following.

� Minimize animated graphics [Flanders and Willis 1998].

� Avoid using animation unless it is appropriate (e.g., showing transitions over time) [Nielsen
2000].

� Animation is irritating to users; it impedes scanning [Spool et al. 1999].

None of these guidelines provide concrete guidance about how much animation is too
much. Hence, an Animated Graphic Count was developed to quantify the use of animated images.
Similarly, an Animated Graphic Ad Count was developed to quantify the use of animated graphical
ads. Animated images are counted as ads if they are used as links to pages from well-known
advertising agencies (DoubleClick, HitBox, Adforce, etc.), contain the word ad or advertising in
the URL, or are to pages on external sites. No measure was developed to detect the use of scrolling
text, since scrolling text is typically implemented using scripts.

5.6.5 Graphic Formatting Measures: Graphic Quality

The quality of images used on the page, including their appropriateness and optimization
(i.e., bytes and resolution), is discussed in the literature [Flanders and Willis 1998; Nielsen 2000;
Sano 1996; Schriver 1997; Spool et al. 1999]. The only concrete guidance provided is for Web
designers to use smaller images with fewer colors [Flanders and Willis 1998; Sano 1996]. Several
measures were developed to assess the sizes of images as well as the screen area covered by images
(Section 5.9). Image processing is not used; thus, the use of colors within images is not assessed.

5.7 Text Formatting Measures

Tables 5.7, 5.8, and 5.9 summarize 24 text formatting measures developed and discussed
in this section. These measures assess the following aspects of Web interfaces.

1. How is body text emphasized?

2. Is there underlined text that is not in text links?
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How is body text emphasized?
Emphasized Body text words

p p
98.6% 98.1% 98.4%

Body Word that are
Count emphasized

(e.g., bolded or
capitalized)

Bolded Body text words
p p

100.0% 99.9% 99.9%
Body Word that are bolded
Count
Capitalized Body text words

p p
99.4% 99.7% 99.6%

Body Word that are
Count capitalized
Colored Body text words

p p
96.8% 95.1% 96.0%

Body Word that are a color
Count other than the

default text color
Exclaimed Body text words

p
100.0% 100.0% 100.0%

Body Word that are near
Count exclamation

points
Italicized Body text words

p p
100.0% 99.5% 99.8%

Body Word that are italicized
Count

Is there underlined text (not in text links)?
Underlined Number of words

p p p
100.0% 100.0% 100.0%

Word Count that are
underlined but
are not text links

Table 5.7: Summary of text formatting measures (Table 1 of 3). The aspects assessed { information design
(ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit

and miss accuracies are only reported for discriminating measures.

3. What font styles are used?

4. What font sizes are used?

5. How many text colors are used?

6. How many times is text re-positioned?

7. How are text areas highlighted?

5.7.1 Text Formatting Measures: Text Emphasis

Several literature sources provide guidance about emphasized text (e.g., bolded, italicized,
and capitalized text) on the page [Flanders and Willis 1998; Nielsen 2000; Schriver 1997]. Speci�c
guidance includes the following.

� Avoid mixing text attributes (e.g., color, bolding, and size) [Flanders and Willis 1998].
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

What font styles are used?
Serif Word Number of words

p p
99.9% 100.0% 99.9%

Count formatted with
serif font faces

Sans Serif Number of words
p p

99.9% 91.7% 95.8%
Word Count formatted with

sans serif font
faces

Undetermined Number of words
p p

100.0% 100.0% 100.0%
Font Style formatted with
Word Count undetermined

font faces
Font Style Whether text is

p p
{ { 100.0%

predominately
sans serif, serif,
or undetermined
font styles

What font sizes are used?
Minimum Smallest font size

p p
{ { 100.0%

Font Size (in points) used
for text

Maximum Largest font size
p p

{ { 100.0%
Font Size used for text
Average Predominate font

p p
{ { 100.0%

Font Size size used
for text

How many text colors are used?
Body Color Number of colors

p p
100.0% 95.6% 97.8%

Count used for body
text

Display Number of colors
p p

100.0% 100.0% 100.0%
Color Count used for display

text

Table 5.8: Summary of text formatting measures (Table 2 of 3). The aspects assessed { information design
(ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit

and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How many times is text re-positioned?
Text Number of text

p
{ { 87.7%

Positioning areas that change
Count position from

ush left
Text Number of x

p
{ { 95.0%

Column positions (i.e.,
Count columns) where

text starts

How are text areas highlighted?
Text Number of text

p p
{ { 68.3%

Cluster areas that are
Count highlighted in

some manner
Link Text Number of link

p p p
{ { 77.8%

Cluster text areas that
Count are highlighted in

some manner
Border Number of text

p p
77.8% 100.0% 88.9%

Cluster and link text
Count areas that are

highlighted with
bordered regions

Color Number of text
p p

93.6% 84.7% 89.2%
Cluster and link text
Count areas that are

highlighted with
colored regions

List Cluster Number of text
p p

91.7% 100.0% 95.8%
Count and link text

areas that are
highlighted with
lists

Rule Cluster Number of text
p p

60.8% 98.8% 79.8%
Count and link text

areas that are
highlighted with
horizontal or
vertical rules

Table 5.9: Summary of text formatting measures (Table 3 of 3). The aspects assessed { information design
(ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit

and miss accuracies are only reported for discriminating measures.
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� Minimize blinking text [Flanders and Willis 1998; Nielsen 2000].

� Avoid italicizing and underlining text [Schriver 1997].

� Avoid using all caps for text [Nielsen 2000].

No measure was developed to assess text emphasis across the entire page, since emphasis
is used for both display and body text. However, measures were developed to assess body text
emphasis as discussed in the next section.

5.7.2 Text Formatting Measures: Body Text Emphasis

The guidance provided in the previous section also applies to emphasized body text; thus,
it is repeated below.

� Avoid mixing text attributes (e.g., color, bolding, and size) [Flanders and Willis 1998].

� Minimize blinking text [Flanders and Willis 1998; Nielsen 2000].

� Avoid italicizing and underlining text [Schriver 1997].

� Avoid using all caps for text [Nielsen 2000].

Numerous measures were developed to quantify body text emphasis, including an Empha-
sized Body Word Count (total number of body words that are bolded, italicized, or emphasized
in some other way) and Bolded, Italicized, and Colored Body Word Counts. An Underlined Word
Count was also developed to detect the presence of words that are underlined but not in text links,
since it is possible for such words to be mistaken for links. The metrics do not directly measure
the mixing of text emphasis, although this may be apparent from the individual measures.

An Emphasized Body Text Percentage measure was examined during both prior metric
studies. This measure did not make a signi�cant contribution for distinguishing rated pages in
the �rst study, but it did make a signi�cant contribution for distinguishing highly-rated pages in
the second one. This measure was abandoned because it violates the low variability guidance for
performance metrics.

5.7.3 Text Formatting Measures: Font Styles

Font style (e.g., serif or sans serif) has been discussed extensively in the literature [Bernard
and Mills 2000; Bernard et al. 2001; Boyarski et al. 1998; Nielsen 2000; Schriver 1997]. Several
usability studies have been conducted wherein serif and sans serif fonts were compared with respect
to reading speed and user preference [Bernard and Mills 2000; Bernard et al. 2001]. Boyarski et al.
[1998] have also compared fonts designed for computer screens to those designed for print. Speci�c
guidance on font styles includes the following.

� Use serif fonts for faster reading by older adults [Bernard et al. 2001].

� Sans serif fonts have a slight advantage over serif fonts and are more preferred [Bernard and
Mills 2000; Schriver 1997].

� Use fonts designed for computer screens (e.g., Verdana and Georgia) rather than fonts de-
signed for print (e.g., Times New Roman) [Boyarski et al. 1998].
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� Use only a few sizes from one or two typeface families; use one serif and one sans serif font
for contrast [Schriver 1997].

� Use sans serif fonts for smaller text and serif fonts for larger text [Nielsen 2000].

Measures were developed to determine the predominant font style used for text. Specif-
ically, the number of words formatted with serif, sans serif, and undetermined font styles are
computed. Tables of serif and sans serif font names were compiled from the literature and Web
sites that classify fonts (e.g., www.buyfonts.com). The HTML Parser and Browser Emulator as-
sumes that the �rst valid font name speci�ed is the one used by the browser. The font style of a
word is then determined by looking up the font name in the tables. A Font Style measure is also
computed as the maximum over the font style word counts; it identi�es the predominate font style
(sans serif, serif, or undetermined font styles).

The measures do not capture whether fonts designed for computer screens as opposed to
those designed for print are used, whether a few font sizes from multiple typeface families are used,
or whether sans serif fonts are used for small text and serif fonts are used for larger text. However,
these measure in conjunction with the font point size measures (discussed below) provide some
indirect insight about the font face and size combinations used.

5.7.4 Text Formatting Measures: Font Point Sizes

Font sizes (e.g., 9 pt and 14 pt) used in Web pages has been discussed extensively in the
literature [Bernard et al. 2001; Flanders and Willis 1998; Nielsen 2000; Schriver 1997]. Speci�c
guidance on font sizes includes the following.

� Use 14 pt fonts for older adults [Bernard et al. 2001].

� Use font sizes greater than 9 pt [Flanders and Willis 1998; Schriver 1997].

� Use 10 to 11 pt (or higher) for body text and 14 pt (or higher) for display text; use larger
point sizes for serif faces [Schriver 1997].

Measures were developed to assess the maximum, minimum, and average point sizes of
text on Web pages. The average point size was determined by tracking point sizes used for each
word on the page and then dividing by the total number of words (i.e., Word Count). No measures
were developed to track fonts sizes used for body as opposed to display text or for sans serif as
opposed to serif fonts.

5.7.5 Text Formatting Measures: Text Colors

Flanders andWillis [1998] encourages Web designers to minimize the number of text colors.
In addition to the Colored Body Word Count (discussed in Section 5.7.2), Body and Display Text
Color Counts were developed; these measures report the number of unique colors used for body
and display text. The measures do not assess if di�erent colors are used for body and display text.

One limitation of the color measures is that they may count colors that are not discrim-
inable or perceptually close. For example, it is possible that users may consider text colored with
two di�erent shades of blue as being the same color; color counts would be inated in this case.
Future work will consider the perceptual closeness of colors in metrics computation.
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5.7.6 Text Formatting Measures: Text Positioning

Changing the alignment of text has been discussed in the literature [Flanders and Willis
1998; Nielsen 2000; Schriver 1997], and speci�c guidance includes the following.

� Avoid centering large blocks of text or links; left-justi�ed text is preferred [Flanders and
Willis 1998].

� Use left-justi�ed, ragged-right margins for text; do not center items in vertical lists [Schriver
1997].

A Text Positioning Count was developed to quantify the number of times that text areas
change position from ush left. This measure was examined in both prior metric studies and
determined to be important for distinguishing rated and highly-rated pages. A similar measure,
Text Column Count, was developed to determine the number of unique positions or columns where
text starts on the page. Ideally, this measure will provide some insight about the complexity of the
page layout, since tables are typically used in a nested manner to control text positioning beyond
using the alignment tags. No measure was developed to assess the alignment of items in a list or
the amount of text that is aligned.

5.7.7 Text Formatting Measures: Text Clustering

Use of text clusters or highlighting text areas in some manner (e.g., enclosing text in
bordered or colored regions) is encouraged as a way to emphasize important text on the page
[Landesman and Schroeder 2000; Nielsen 2000; Sawyer and Schroeder 2000; Schriver 1997]. Text
clustering is not to be confused with text emphasis; in the latter case, only the text is emphasized
(e.g., bolded or italicized) as opposed to the entire area surrounding the text in the �rst case.
Speci�c guidance on text clustering includes the following.

� Use text clustering in small amounts and clusters should not contain much continuous text
[Schriver 1997].

� Delineate links with bullets, spaces, etc. when they are in a group [Landesman and Schroeder
2000; Sawyer and Schroeder 2000]. This type of formatting is considered to be a form of text
clustering.

Several measures of text and link text clustering were developed, including Text and Link
Text Cluster Counts. If more than 50% of the text in a cluster is link text, then the cluster is
considered a link text cluster and vice versa for text clusters. Use of speci�c clustering techniques,
such as colored, list, or rule clusters, is also quanti�ed. For colored text clusters, proximity to
other colored clusters is considered. For example, if a colored cluster is adjacent to another colored
cluster with a perceptually-close color, then only one text cluster is counted. Perceptual color
closeness is determined by �rst translating the RGB (red, green, and blue) colors [Foley et al. 1990]
into CIE Luv (luminancy and chrominancy) colors [Bourgin 1994]. The CIE Luv color space is
device-independent and uniform (i.e., all colors are equidistant from each other). If the Euclidean
distance of two Luv colors is less than 5, then the colors are considered to be perceptually close
[Jackson et al. 1994].

Detecting some forms of text clustering, such as manual rule or list clusters (see Sections
5.7.8 and 5.7.9 below), is not as accurate as all of the other measures developed; image processing
techniques are required to improve the accuracy of these measures.
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The Text Cluster Count (encompassing text and link text clusters) was studied in both
prior metric studies. Although it was shown in both cases that rated and highly-rated pages used
text clustering more so than the other pages, this measure did not play an important role in
classifying these pages.

5.7.8 Text Formatting Measures: Lists

A list is one form of text clustering as discussed above. Schriver [1997] suggests that Web
designers minimize the number of lists on a Web page. A List Cluster Count was developed to
quantify the number of lists on the page. One limitation of this measure is that it can only capture
lists created with HTML list tags (e.g., <ul> or <ol>). Hence, it was only 79% accurate overall
with only a 60% hit accuracy for the Web page sample. Image processing techniques are required
to detect manually-created lists (e.g., rows of items separated with <br> tags) and to consequently
improve accuracy.

5.7.9 Text Formatting Measures: Rules

Horizontal and vertical rules are other forms of text clustering. Speci�c guidance on the
use of rules includes the following.

� Minimize the number of rules [Schriver 1997].

� Horizontal rules that are the full width of the page may be interpreted as the end of a page
and possibly discourage scrolling [Spool et al. 1999].

A Rule Cluster Count was developed to quantify the number of rules on the page. One
limitation of this measure is that it can only capture rules created with the HTML rule tag (<hr>).
Image processing techniques are required to detect manually-created rules (e.g., an image containing
a thin line). No measure was developed to detect whether vertical rules span the full width of pages.

5.7.10 Text Formatting Measures: Text in Clusters

As discussed above, the literature also discusses the amount of text contained in text
clusters [Furnas 1997; Nielsen 2000; Schriver 1997]. Schriver [1997] suggests that Web designers
minimize the amount of continuous text in clusters [Schriver 1997]. No measure was developed to
assess the amount of text in clusters, since the current cluster measures are not highly accurate.

5.8 Link Formatting Measures

Table 5.10 summarizes three link formatting measures developed and discussed in this
section. These measures assess the following Web interface features.

1. Are there text links that are not underlined?

2. What colors are used for links?
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

Are there text links that are not underlined?
Non- Whether there

p p p
{ { 91.7%

Underlined are text links
Text Links without visible

underlines

What colors are used for links?
Link Color Number of colors

p p
100.0% 99.2% 99.6%

Count used for text links
Standard Number of default

p p
100.0% 100.0% 100.0%

Link Color browser colors
Count used for text links

Table 5.10: Summary of link formatting measures. The aspects assessed { information design (ID), naviga-
tion design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit and miss

accuracies are only reported for discriminating measures.

5.8.1 Link Formatting Measures: Non-Underlined Links

It is possible for text links without underlines to be overlooked, since users are accustomed
to the converse. Sawyer and Schroeder [2000] suggest that Web designers avoid using non-underlined
text links, because they may be confused with text or considered a placeholder. A Non-Underlined
Text Links measure was developed to detect the presence of text links without visible underlines.

5.8.2 Link Formatting Measures: Link Colors

The surveyed literature provides some guidance on colors used for text links [Nielsen 2000;
Sawyer and Schroeder 2000; Spool et al. 1999], including the following.

� Use distinct link and visited link colors [Nielsen 2000; Sawyer and Schroeder 2000].

� Use link and visited link colors that are similar to default browser colors (shades of blue, red,
and purple) [Nielsen 2000].

� Use default browser colors for links [Spool et al. 1999].

A Link Color Count was developed to assess the number of colors used for text links.
No measures were developed to detect whether separate colors are used for unvisited and visited
links, nor whether colors are similar to the default browser colors; such measures will be developed
in future work. A Standard Link Color Count was developed to measure the number of default
browser colors used (e.g., blue used for unvisited links).

One limitation of the color measures is that they may count colors that are not discrim-
inable or perceptually close. For example, it is possible that users may consider link text colored
with two di�erent shades of blue as being the same color; color counts would be inated in this
case. Future work will consider the perceptual closeness of colors in metrics computation.

5.9 Graphic Formatting Measures

Table 5.11 summarizes the seven graphic formatting measures developed for assessing the
following features of Web interfaces.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How tall are graphics?
Minimum Minimum image

p
{ { 100.0%

Graphic height
Height
Maximum Maximum image

p
{ { 100.0%

Graphic height
Height
Average Average image

p
{ { 100.0%

Graphic height
Height

How wide are graphics?
Minimum Minimum image

p
{ { 100.0%

Graphic width
Width
Maximum Maximum image

p
{ { 100.0%

Graphic width
Width
Average Average image

p
{ { 100.0%

Graphic width
Width

How much page area is covered by graphics?
Graphic Total page area

p
{ { 100.0%

Pixels covered by
images

Table 5.11: Summary of graphic formatting measures. All of the measures are expressed in pixels. The
aspects assessed { information design (ID), navigation design (ND), graphic design (GD), and experience
design (ED) { are denoted with a

p
. Hit and miss accuracies are only reported for discriminating measures.

1. How tall are graphics?

2. How wide are graphics?

3. How much page area is covered by graphics?

Several literature sources discuss the sizes of images (the number of pixels in an image)
[Flanders and Willis 1998; Nielsen 2000; Schriver 1997]. Flanders and Willis [1998] suggest that
Web designers avoid using large graphics, although they do not quantify what is considered a large
graphic. Hence, several measures were developed to assess the sizes of images: the minimum,
maximum, and average height of images; the minimum, maximum, and average width of images;
and the total pixel area covered by images. The latter measure in conjunction with a measure
of the pixel area required for the page (discussed in Section 5.10.8) provides insight about what
portion of the page is covered by images.

5.10 Page Formatting Measures

Tables 5.12, 5.13, and 5.14 summarize the 27 page formatting measures developed and
discussed in this section. These measures assess the following aspects of Web interfaces.



117

1. How are colors used across the page?

2. What fonts are used across the page?

3. How big is the page? Big in this context refers to the width and height of pages.

4. Are there interactive elements on the page?

5. How is the page's style controlled?

6. Information about other page characteristics (e.g., the page's functional type and self-containment).
Section 5.11 discusses functional types for pages, including home, link, and form pages. Self-
containment in this context refers to the degree to which the page is rendered with HTML
code and images, as opposed to being rendered with stylesheets, applets, scripts, etc.

The HTML Parser and Browser Emulator (see Chapter 4) was con�gured to simulate the
Netscape Navigator 4.75 browser with default window settings (menu bar, address bar, toolbar,
and status line). Currently, most monitors are 800 x 600 pixels [DreamInk 2000]; thus, the window
size was �xed at 800 x 600 pixels for computing page formatting measures.

5.10.1 Page Formatting Measures: Colors

Colors used on computer screens, inWeb interfaces in particular, is discussed extensively in
the literature [Amb�uhler and Lindenmeyer 1999; Flanders andWillis 1998; Kaiser 1998; Murch 1985;
Sano 1996; Schriver 1997; Stein 1997]. Speci�c guidance includes the following.

� Use no more than 6 discriminable colors [Murch 1985].

� Use browser-safe colors [Kaiser 1998].

� Use 256 (i.e., 8 bit) color palettes [Sano 1996].

In addition to the color measures developed to assess text and link formatting (Sections
5.7.5 and 5.8.2), three measures were developed to assess color use at the page level. A Color Count
measures the total number of unique colors used for text, links, backgrounds, table areas, etc.; this
measure made signi�cant contributions in distinguishing Web pages in both prior metric studies.
For each color used, the number of times it is used on the page is also tracked. For example, for
every word on the page, the corresponding color use count is updated. The Minimum Color Use
measure reports the minimum number of times a color is used. The average and maximum number
of times a color is used is not reported, since these measures would be proportional to the amount
of text on the page. This measure detects the use of an accent or sparsely-used color.

Use of \good" colors is also assessed through several measures. The Web design literatures
encourages the use of browser-safe colors or colors whose RGB values are all evenly divisible by 51
[Kaiser 1998]. The Browser-Safe Color Count reports the number of such colors. Other measures
to assess the quality of color combinations were developed and are discussed below.

One limitation of the color measures is that they may count colors that are not discrim-
inable or perceptually close. For example, it is possible that users may consider two shades of blue
with distinct RGB values as being the same; color counts would be inated in this case. Future
work will consider the perceptual closeness of colors in metrics computation.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How are colors used across the page?
Color Count Number of colors

p
{ { 99.5%

used
Minimum Minimum

p
{ { 100.0%

Color Use number of times
a color is used

Browser- Number of
p

100.0% 100.0% 100.0%
Safe Color browser-safe
Count colors used
Good Text Number of

p
100.0% 100.0% 100.0%

Color good text or
Combination thin line color

combinations
Neutral Text Number of

p
100.0% 100.0% 100.0%

Color neutral text or
Combinations thin line color

combinations
Bad Text Number of

p
100.0% 100.0% 100.0%

Color bad text or
Combinations thin line color

combinations
Good Panel Number of

p
100.0% 100.0% 100.0%

Color good thick line
Combinations or panel color

combinations
Neutral Number of

p
100.0% 100.0% 100.0%

Panel Color neutral thick line
Combinations or panel color

combinations
Bad Panel Number of

p
100.0% 100.0% 100.0%

Color bad thick line
Combinations or panel color

combinations

Table 5.12: Summary of page formatting measures (Table 1 of 3). The quality of text and panel color
combinations is assessed based on research in [Murch 1985]. The aspects assessed { information design (ID),
navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with a

p
. Hit and

miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

What fonts are used across the page?
Font Count Number of fonts

p
{ { 95.7%

used
Serif Font Number of serif

p
{ { 100.0%

Count font faces used
Sans Serif Number of sans

p
{ { 100.0%

Font Count serif font faces
used

Undeter- Number of
p

{ { 100.0%
mined Font undetermined
Style Count font faces used

How big is the page?
Page Height of page in

p
{ { 88.2%

Height pixels (600 pixel
screen height)

Page Width of page in
p

{ { 95.7%
Width pixels (800 pixel

screen width)
Page Total screen

p
{ { 84.0%

Pixels area required to
render the page

Vertical Number of
p

{ { 85.9%
Scrolls vertical scrolls

required to view
the entire page

Horizontal Number of
p

{ { 100.0%
Scrolls horizontal scrolls

required to view
the entire page

Are there interactive elements on the page?
Interactive Number of text

p
{ { 100.0%

Element �elds, buttons,
Count and other form

objects
Search Number of forms

p
{ { 91.7%

Element for performing a
Count search

Table 5.13: Summary of page formatting measures (Table 2 of 3). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How is the page's style controlled?
External Whether an

p
{ { 100.0%

Stylesheet external
Use stylesheet �le is

used to format
the page

Internal Whether an
p

{ { 100.0%
Stylesheet internal
Use stylesheet is

used within the
<head> tag to
format the page

Fixed Page Whether tables
p

{ { 100.0%
Width Use are used to

create a speci�c
page width

Other page characteristics (e.g., page's functional type and self-containment)
Page Depth Level of the page

p
{ { {

within the site
(determined by
(crawling
order)

Page Type The page's
p

{ { 84.0%
functional type

Self The degree to
p

{ { 100.0%
Containment which all page

elements are
rendered solely
via the HTML
and image �les

Spamming Whether the
p

{ { 100.0%
Use page uses

invisible text or
long page titles
possibly
indicating
spamming

Table 5.14: Summary of page formatting measures (Table 3 of 3). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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5.10.2 Page Formatting Measures: Color Combinations

The quality of color combinations used on computer screens, in Web pages in particular,
has also been discussed in the literature [Flanders and Willis 1998; Murch 1985; Nielsen 2000].
Speci�c guidance includes the following.

� Use color combinations determined to be good (i.e., high contrast) via research studies [Murch
1985].

� Avoid using black backgrounds [Flanders and Willis 1998].

� Use high contrast between background and text [Flanders and Willis 1998; Nielsen 2000].

Murch [1985] conducted a study with sixteen users wherein color combinations on com-
puter screens were examined; combinations of white, black, red, green, blue, cyan, magenta, and
yellow were used. From this study, the author developed tables summarizing foreground and back-
ground color combinations that were preferred or rejected by at least 25% of the participants. Color
combinations were examined for text and thin lines (i.e., less than three pixels in width or height)
as well as for thick lines and panels (i.e., large shaded areas, such as a colored navigation bar).

Based on this information, six measures were developed to report the number of good,
neutral, and bad color combinations for text (text and thin lines) and panels (panels and thick
lines). Color combinations are only reported as being bad or good if 40% (seven or more) of the
participants rejected or preferred the color combinations in Murch's study; this is a more stringent
criteria than the 25% cuto� used by Murch. The previously-discussed CIE Luv color space is
used as a starting point for mapping RGB values from a Web page into one of the eight study
colors. A CIE Luv color is then mapped into the closest Munsell color [Foley et al. 1990]; this �nal
mapping identi�es a corresponding hue (i.e., one of the eight study colors). Over 700 Munsell color
swatches are used for this mapping; the mapping algorithm and Munsell color swatch information
was provided courtesy of Chris Healey [Healey 1996].

The Metrics Computation Tool analyzes all foreground and background color combinations
used in a Web page, provided these color combinations are embedded within the HTML code. As
previously discussed, the hues identi�ed for foreground and background colors are used to determine
if the color combination is good, bad, or neutral (i.e., not rejected or preferred by at least 40%
of study participants). If two colors map into the same hue, then the distance between the colors
is considered to determine whether it is a bad (i.e., colors are too close) or neutral (i.e., colors
are distinct enough) color combination. Experimenting with various color distances revealed that a
Euclidean distance of 25 was adequate for determining if two colors are distinct enough; this distance
is the square of the previously-discussed perceptual closeness distance [Jackson et al. 1994].

Cultural information is not taken into consideration when determining the quality of color
combinations. Whether the page background is black is also not reported. Color combinations used
in images, applets, etc. are not assessed, since this assessment requires image processing techniques.

One limitation of the color combination measures is that they may count color combina-
tions that are not discriminable or perceptually close. For example, it is possible that users may
consider two areas with white foreground text and backgrounds that are shades of blue with distinct
RGB values as being the same; color combination counts would be inated in this case. Future
work will consider the perceptual closeness of colors in metrics computation. Another limitation is
that the color palette is not evaluated to determine if a good selection of colors is used; this will be
explored in future work.
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5.10.3 Page Formatting Measures: Fonts

A font is a combination of four features: a font face, a font size, whether text is bolded, and
whether text is italicized [Schriver 1997]. Several sources discuss fonts [Nielsen 2000; Schriver 1997;
Stein 1997], and Nielsen [2000] suggests that Web designers use no more than two fonts and possibly
one for special text. A Font Count was developed to report the total number of unique fonts used
on a page; this measure played a signi�cant role in distinguishing highly-rated pages in the second
metrics study. The number of each type of font face { serif, sans serif, and undetermined font styles
{ is also reported. The measures do not report whether a font or font face is used for special text
nor do they distinguish fonts used for body and display text.

The font measures in this section are distinct from the ones in Section 5.7.3. The latter
ones assess the number of words formatted with serif and sans serif font styles; thus, proving some
insight about how fonts are used.

5.10.4 Page Formatting Measures: Line Length

The width of text lines on the page is discussed in the literature [Flanders and Willis 1998;
Schriver 1997], and speci�c guidance includes the following.

� Keep line lengths to 40{60 characters [Schriver 1997].

� Keep text between 9 to 15 words per line [Flanders and Willis 1998].

No measure was developed to assess text line lengths, since lengths vary considerably when
multiple columns are used. Image processing techniques are required to accurately determine line
lengths.

5.10.5 Page Formatting Measures: Leading

Spacing between consecutive text lines on a page is more of a concern for print documents
than Web documents, since Web pages typically use consistent spacing as dictated by browsers.
Stylesheet parameters can also control leading. Schriver [1997] suggests that leading be 120% of the
font face's point size and even larger between paragraphs. Given that leading is mainly controlled
by the browser, no measure was developed to assess this feature.

5.10.6 Page Formatting Measures: Framesets

Use of framesets is an often debated topic in Web design literature, since they typically
confuse users [Flanders and Willis 1998; Nielsen 2000; Stein 1997]. Speci�c guidance includes the
following.

� Avoid using framesets [Nielsen 2000].

� Use tables instead of framesets [Flanders and Willis 1998].

Although simple to measure, no measure was developed to report the use of framesets,
since the tool was not designed to support them. However, the tool does support inline frames,
since text equivalents are typically provided by designers; inline frames are only supported by the
Internet Explorer browser. All metric studies, including the study discussed in the next chapter,
excluded sites that used framesets.
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5.10.7 Page Formatting Measures: Interactive Elements

Use of buttons, text boxes, pull-down menus, and other interactive elements has been
discussed extensively in the literature [Flanders and Willis 1998; Rosenfeld and Morville 1998;
Sawyer and Schroeder 2000; Scanlon and Schroeder 2000b; Spool et al. 1999]. Speci�c guidance on
interactive elements includes the following.

� Avoid using mouseovers and pull-down menus for navigation [Rosenfeld and Morville 1998;
Sawyer and Schroeder 2000].

� Support search; users use search half of the time [Scanlon and Schroeder 2000b].

� Make the scope and results of searching clear [Spool et al. 1999].

� Do not use form buttons as links (i.e., overuse buttons) [Flanders and Willis 1998].

An Interactive Element Count was developed to report the total number of form elements
used (all buttons, select menus, checkboxes, etc.). A Search Element Count was also developed to
determine whether searching is supported on the page. Several heuristics were developed to detect
search forms with 92% overall accuracy. For example, if the form or some element in the form
contains the term \search," then it is considered a search form. One limitation of the measure is
that it does not detect whether the search is for the site itself or for the Web at large.

No measures were developed to detect the use of form elements for navigation or whether
the scope and results of searching are clear.

5.10.8 Page Formatting Measures: Screen Size

Much guidance is provided in the literature on the width and height of Web interfaces
[Flanders and Willis 1998; Nielsen 2000; Sano 1996; Sawyer et al. 2000], including the following.

� Limit horizontal width to 572 pixels or less [Sano 1996].

� Restrict page width and height to 595 x 295 pixels [Flanders and Willis 1998].

� Restrict page width to less than 600 pixels [Nielsen 2000].

� Longer pages are better; use 800 x 600 pixels; and avoid horizontal scrolling [Sawyer et al.
2000].

Di�erences in page width and height recommendations reect changes in the dominant
screen sizes over the years. Currently, most monitors are 800 x 600 pixels [DreamInk 2000]. Thus,
measures of the width and height of a page were developed using an 800 x 600 screen size. The
available width for pages is determined based on the Netscape Navigator 4.75 browser; small areas
are occupied on the left and right of the browser window for a scroll bar and border. A Page Pixels
measure was developed to report the total number of pixels covered by the page; this measure is
the page width multiplied by the page height.
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5.10.9 Page Formatting Measures: Screen Coverage

The total screen area covered (i.e., non whitespace) is also discussed in the literature
[Sawyer et al. 2000; Schriver 1997; Spool et al. 1999]. The consensus is that Web designers minimize
whitespace on the page [Sawyer et al. 2000; Spool et al. 1999]. No measure was developed to
determine the total screen area covered, since this computation may require image processing
techniques. For example, blank images are often used extensively as spacers; counting areas covered
by spacers could inate screen coverage.

5.10.10 Page Formatting Measures: Text Density

The screen area covered by text is discussed in the literature [Sawyer et al. 2000; Schriver
1997; Spool et al. 1999]; speci�c guidance includes the following.

� Text should cover no more than 25{30% of the screen area [Schriver 1997].

� Greater text density facilitates page scanning [Sawyer et al. 2000; Spool et al. 1999].

These guidelines obviously contradict each other. However, no measure was developed
to determine the text density, since this computation may require image processing techniques to
compute accurately.

5.10.11 Page Formatting Measures: Scrolling

Vertical and horizontal scrolling is discussed extensively in the literature [Flanders and
Willis 1998; Nielsen 2000; Spool et al. 1999]; speci�c guidance includes the following.

� Minimize scrolling [Spool et al. 1999].

� Minimize vertical scrolling to 2 screens [Flanders and Willis 1998].

� Users should not be required to scroll [Nielsen 2000].

The number of vertical and horizontal scrolls required to view the entire page is measured.
An 800 x 600 screen size is used for these computations, since most monitors are at least 800 x
600 pixels [DreamInk 2000]. The available width for pages is determined based on the Netscape
Navigator 4.75 browser; small areas are occupied on the left and right of the browser window for a
scroll bar and border. Similarly, the available height is adjusted to account for the Netscape default
menu bar, toolbar, address bar, and status bar.

5.10.12 Page Formatting Measures: Stylesheets

Use of stylesheets to control page layout has been discussed in the literature [Flanders
and Willis 1998; Nielsen 2000], and speci�c recommendations include the following.

� Use stylesheets to enforce consistency [Flanders and Willis 1998; Nielsen 2000].

� Use external rather than embedded stylesheets [Nielsen 2000].
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Two measures { External and Internal Stylesheet Use { were developed to detect the use
of external stylesheet �les and internal stylesheets within the <head> tag of Web pages, respec-
tively. Both of these measures are associated with experience design in Table 5.14, since the a�ects
of stylesheets are more overarching than just information, navigation, and graphic design. For
instance, use of external and internal stylesheets can potentially improve consistency across pages
and reduce download time. Use of embedded style tags (i.e., style attributes within HTML tags or
within the body of Web pages) is not detected, since this is not considered as a consistent use of
stylesheets to control page layout. A related measure { Fixed Page Width { detects whether tables
are used to force a �xed page width or not.

5.10.13 Page Formatting Measures: Layout Quality

All of the measures discussed in this section provide some insight about some aspects of
layout quality. Other high-level aspects discussed in the literature include: aesthetics, alignment,
balance, and the presence of distractions (e.g., popup windows or spawning browser windows)
[Flanders and Willis 1998; Nielsen 2000; Sano 1996; Scanlon and Schroeder 2000a; Schriver 1997].
High-level features such as aesthetics are diÆcult to measure in an automated manner, since this
is largely subjective and requires input from users. Other aspects, such as alignment and balance,
require image processing techniques to assess; hence, no measures were implemented to assess
them. Although it is suggested that Web designers minimize distractions (e.g., spawning browser
windows) [Scanlon and Schroeder 2000a], the presence of distractions is not detected, since these
elements are typically implemented with scripting.

Other features associated with layout quality, such as page depth, self-containment, and
spamming use are measured. The page depth is determined by the crawling order within a site,
and does not necessarily reect the actual depth of the page in the site. Self-containment reects
the degree to which all elements required to render the page are contained in the HTML page itself
and image �les, as opposed to being rendered by external stylesheet �les, scripts, applets, and other
objects. For example, if a page does not use external stylesheets, scripts, applets, etc., then it is
considered to have high self-containment. If long page titles (more than 64 characters) or a series
of invisible words are in the page, then spamming use is reported for the page.

5.11 Page Function

Another aspect of page formatting is the primary function of Web pages (i.e., whether
pages are primarily for content or links), which needs to be considered during design [Flanders and
Willis 1998; Sano 1996; Stein 1997]. The �rst metric study showed that considering page function
(home vs. other pages) leads to more accurate predictions. Although several studies have focused
on automatically predicting the genre of a site (e.g., commercial or academic) [Bauer and Scharl
2000; Ho�man et al. 1995], few studies have been conducted to determine ways for automatically
predicting the function of a page [Karlgren 2000; Pirolli et al. 1996; Stein 1997]. Stein [1997]
considers the ratio of text link words to all of the words on a page. If this ratio is high, then the
page is considered to be primarily for links; no guidance is given for what constitutes a high ratio.

Karlgren [2000] surveyed over 600 Web users to determine a set of eleven genres (e.g.,
home pages, searchable indices, journalistic, reports, FAQs, and others) and used 40 linguistic
(e.g., number of adverbs, characters, long words, present participles, etc.) and Web (e.g., number
of images and links) measures for predicting page type. Karlgren developed a decision tree to
generate predictions; however, the author did not report the accuracy of the tree nor provide model
details. This work was incorporated into a search interface that clusters search results by genre.
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Pirolli et al. [1996] present a set of functional categories for Web pages, including home
(organizational and personal), index, source index (sub-site home pages), reference, destination
(sink pages such as acronym, copyright, and bibliographic references), and content. Pages can
belong to multiple categories in their classi�cation scheme. The authors developed a classi�cation
algorithm based on features that a Web page exhibits (e.g., page size, number of inbound and
outbound links, depth of children, and similarity to children). For example, reference pages had a
relatively larger page size and fewer inbound and outbound links. Page classi�cation was used in
conjunction with text similarity, hyperlink structure, and usage data to predict the interests (i.e.,
plausible information-seeking goals) of Web site users.

The work in [Karlgren 2000] and [Pirolli et al. 1996] was used as a starting point for
developing an approach for predicting page types. Examination of the eleven genres in [Karlgren
2000] revealed that most quali�ed the type of text on the page (e.g., journalistic, discussions, lists,
and FAQs), while the remaining genres were for pages with di�erent functionality (e.g., links, forms,
and home pages). Similarly, the categories in [Pirolli et al. 1996] contain multiple text, link, and
home page types. Hence, these categories were collapsed into the following �ve page types.

Home: main entry pages to a site that typically provide a broad overview of site contents.

Link: pages that mainly provide one or more lists of links. Links may be annotated with text or
grouped with headings (e.g., yahoo directory, redirect page, or sitemap). This functional type
includes category pages (entry pages to sub-sites or major content areas).

Content: pages that mainly provide text. This functional type includes reference (e.g., a glossary,
FAQ, search and site tips, and acronyms) and legal (e.g., disclaimers, privacy statements,
terms, policies, and copyright notices) pages.

Form: pages that are primarily HTML forms.

Other: all remaining graphical (e.g., splash pages, image maps, and Flash) and non-graphical
(e.g., blank, under construction, error, applets, text-based forms, and redirect) pages.

With the assistance of an undergraduate student, Deep Debroy, a sample of 1,770 Web
pages were classi�ed into the �ve categories above; each page was assigned to only one category.
The pages came from 6 types of sites (Community, Education, Finance, etc.) with low to high
expert ratings (see Chapter 6); there were at least 223 pages for each functional type. Multiple
Linear Regression analysis [Keppel and Zedeck 1989] was used to identify a subset of the measures
for model building. The Classi�cation and Regression Tree (C&RT) [Breiman et al. 1984] method
with 70% training and 30% test samples was used on this subset of measures. The resulting tree
contains 70 rules and has an accuracy of 87% and 75% for the training and test samples, respectively.
Cross validation [Scha�er 1993] was also used to further assess whether the model is generalizable
to new data; the tree has a 5-fold cross validation accuracy of 75%. Figures 5.3 and 5.4 present
example rules for predicting each page type.

5.12 Page Performance Measures

Tables 5.15{5.19 summarize 37 page performance measures developed to answer the fol-
lowing questions.

1. How fast is the page rendered?
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if ((All Page Text Score is not missing AND (All Page Text Score � 10.5)) AND (HTML
Bytes is missing OR (HTML Bytes > 2735)) AND (Link Count is missing OR (Link Count
> 8.5)) AND (Meta Tag Word Count is missing OR (Meta Tag Word Count > 18.5)))

PageType = Home

This rule classi�es pages as home pages if they have: minimal content similarity between

source and destination page text (good visible and invisible words; this is typically because

home pages are the �rst pages crawled and are therefore not compared to a source page); an

HTML page size of more than 2.7K; 8.5 or more links; and 18.5 or more meta tag words.

if ((All Page Text Score is missing OR (All Page Text Score > 10.5)) AND (Good Body
Word Count is not missing AND (Good Body Word Count � 86.5)) AND (Link Word Count
is missing OR (Link Word Count � 73)) AND (Good Body Word Count is not missing AND
(Good Body Word Count � 22.5)) AND (Link Count is not missing AND (Link Count >
21.5)) AND (Script Bytes is missing OR (Script Bytes � 2678.5)) AND (Interactive Object
Count is missing OR (Interactive Object Count � 1.5)))

PageType = Link

This rule classi�es pages as link pages if they have: some content similarity between source

and destination page text (good visible and invisible words); between 22.5 and 86.5 good

body words; 73 or fewer link words; 1.5 or fewer interactive objects; more than 21.5 links;

and less than 2.7K of script bytes (possibly for form validation).

if ((All Page Text Score is missing OR (All Page Text Score > 10.5)) AND (Link Word
Count is not missing AND (Link Word Count > 77.5)) AND (Good Body Word Count is
not missing AND (Good Body Word Count > 278)) AND (Exclaimed Body Word Count is
not missing AND (Exclaimed Body Word Count � 0.5)))

PageType = Content

This rule classi�es pages as content pages if they have: some content similarity between

source and destination page text (good visible and invisible words); more than 77.5 link

words; more than 278 good body words; and virtually no body words that are near excla-

mation points.

Figure 5.3: Example decision tree rules for predicting page types (Home, Link, and Content pages).
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if ((All Page Text Score is not missing AND (All Page Text Score � 10.5)) AND (HTML
Bytes is not missing AND (HTML Bytes � 2735)) AND (Search Object Count is not missing
AND (Search Object Count > 0.5)))

PageType = Form

This rule classi�es pages as form pages if they have: minimal content similarity between

source and destination page text; 2.7K or fewer HTML bytes; and search support.

if ((All Page Text Score is not missing AND (All Page Text Score � 10.5)) AND (HTML
Bytes is not missing AND (HTML Bytes � 2735)) AND (Search Object Count is missing
OR (Search Object Count � 0.5)))

PageType = Other

This rule classi�es pages as other pages if they have: minimal content similarity between

source and destination page text; 2.7K or fewer HTML bytes; and virtually no search

support.

Figure 5.4: Example decision tree rules for predicting page types (Form and Other pages).

2. Is the page accessible to people with disabilities?

3. Are there HTML errors on the page?

4. Is there strong \scent" to the page? Scent in this context refers to whether the page text
provides hints about the contents on a linked page without having to navigate to the page.

5.12.1 Page Performance Measures: Page Bytes

The total bytes for the Web page (HTML code, stylesheets, objects, and images) plays
an important role in how fast the page loads in the browser [Flanders and Willis 1998; Nielsen
2000]. Nielsen [2000] recommends that Web designers keep page bytes below 34K for fast loading.
Most HTML authoring tools, such as Microsoft FrontPage and Macromedia Dreamweaver, provide
download speed estimates; these estimates typically only consider the total bytes for pages. Ex-
periments using only the total page bytes to estimate download speed revealed that such estimates
only account for roughly 50% of download speed. Hence, a more accurate model of download speed
was developed; this model is discussed in Section 5.12.4.

A Page Bytes measure was developed and shown to make signi�cant contributions in
distinguishing Web pages in both prior metric studies. The percentage of page bytes attributable
to graphics was also shown to play a signi�cant role in distinguishing highly-rated pages in the
second study. These measures are not used in the download speed computation, since di�erent
types of bytes (e.g., graphic bytes or script bytes) inuence download speed di�erently. The page
bytes measure does not capture bytes that may be embedded in objects, stylesheets, scripts, etc.
For example, if a stylesheet imports a secondary stylesheet, page bytes for the �rst stylesheet are
counted but not for the second one.

The page bytes and graphic percentage measures were replaced with an HTML bytes
measure { total bytes for HTML tags, excluding tags for scripts, layers, and other objects { and
the number of HTML �les. Similar measures were developed for graphics, scripts, and objects as
discussed in the sections below.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How fast is the page rendered?
Table Number of HTML

p
{ { 100.0%

Count tables used to
render the page

HTML File Number of HTML
p

100.0% 100.0% 100.0%
Count �les, including

stylesheet �les
HTML Total bytes for

p
100.0% 100.0% 100.0%

Bytes HTML tags, text,
and stylesheet
tags

Graphic Number of image
p

100.0% 100.0% 100.0%
File Count �les
Graphic Total bytes for

p
100.0% 100.0% 100.0%

Bytes image �les
Script File Number of script

p
100.0% 100.0% 100.0%

Count �les
Script Total bytes for

p
100.0% 100.0% 100.0%

Bytes scripts
(embedded in
script tags and in
script �les)

Object Number of object
p

100.0% 100.0% 100.0%
File Count �les (e.g., for

applets, layers,
sound, etc.)

Object Total bytes for
p

100.0% 100.0% 100.0%
Bytes object tags and

object �les
Object Number of

p
{ { 100.0%

Count scripts, applets,
objects, etc.

Download Time for a page
p

{ { 86.0%
Time to fully load over

a 56.6K modem
(41.2K connection
speed)

Table 5.15: Summary of page performance measures (Table 1 of 5). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

Is the page accessible to people with disabilities?
Bobby Whether the

p
{ { 100.0%

Approved page was
approved by
Bobby as
being accessible
to people
with disabilities

Bobby Number of
p

{ { 100.0%
Priority 1 Bobby priority 1
Errors errors reported
Bobby Number of

p
{ { 100.0%

Priority 2 Bobby priority 2
Errors errors reported
Bobby Number of

p
{ { 100.0%

Priority 3 Bobby priority 3
Errors errors reported
Bobby Number of

p
{ { 100.0%

Browser Bobby browser
Errors compatibility

errors reported

Are there HTML errors in the page?
Weblint Number of

p
{ { 100.0%

Errors HTML syntax
errors reported
by Weblint

Is there strong \scent" to the page?
Visible Page Maximum good

p p
{ { 100.0%

Text Terms visible words on
source &
destination pages

Visible Unique Maximum good
p p

100.0% 100.0% 100.0%
Page Text visible, unique
Terms words on source

& destination
pages

Visible Page Common visible
p p

100.0% 100.0% 100.0%
Text Hits words on source

& destination
pages

Table 5.16: Summary of page performance measures (Table 2 of 5). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

Is there strong \scent" to the page?
Visible Page Score for

p p
100.0% 100.0% 100.0%

Text Score common visible
words on source
& destination
pages

All Page Maximum good
p p

{ { 100.0%
Text Terms visible and

invisible words
on source &
destination pages

All Unique Maximum good
p p

100.0% 100.0% 100.0%
Page Text visible and
Terms invisible, unique

words on source
& destination
pages

All Page Common visible
p p

100.0% 100.0% 100.0%
Text Hits and invisible

words on source
& destination
pages

All Page Score for
p p

100.0% 100.0% 100.0%
Text Score common visible

and invisible
words on source
& destination
pages

Visible Link Maximum good
p p

{ { 100.0%
Text Terms visible words in

the link text &
destination page

Visible Unique Maximum good
p p

100.0% 100.0% 100.0%
Link Text visible, unique
Terms words in the

link text &
destination page

Visible Link Common visible
p p

100.0% 100.0% 100.0%
Text Hits words in the

link text &
destination page

Table 5.17: Summary of page performance measures (Table 3 of 5). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

Is there strong \scent" to the page?
Visible Link Score for

p p
100.0% 100.0% 100.0%

Text Score common visible
words in the
link text &
destination page

All Link Maximum good
p p

{ { 100.0%
Text Terms visible and

invisible words in
the link text &
destination page

All Unique Maximum good
p p

100.0% 100.0% 100.0%
Link Text visible and
Terms invisible, unique

words in the
link text &
destination page

All Link Common visible
p p

100.0% 100.0% 100.0%
Text Hits and invisible

words in the
link text &
destination page

All Link Score for
p p

100.0% 100.0% 100.0%
Text Score common visible

and invisible
words in the
link text &
destination page

Page Title Maximum good
p p

{ { 100.0%
Terms page title words

on source &
destination pages

Unique Page Maximum good,
p p

100.0% 100.0% 100.0%
Title Terms unique page title

words on source &
destination pages

Table 5.18: Summary of page performance measures (Table 4 of 5). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

Is there strong \scent" to the page?
Page Title Common page

p p
100.0% 100.0% 100.0%

Hits title words
on source &
destination pages

Page Title Score for
p p

100.0% 100.0% 100.0%
Score common page

title words
on source &
destination pages

Table 5.19: Summary of page performance measures (Table 5 of 5). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.

5.12.2 Page Performance Measures: Graphic Bytes

The literature discusses the total bytes for images on the page [Flanders and Willis 1998;
Nielsen 2000]. Speci�cally, Flanders and Willis [1998] suggest that Web designers keep graphic
bytes to less than 35K and to optimize images. This recommendation obviously contradicts the
recommendation from Nielsen to keep the Web page and all elements under 34K [Nielsen 2000].
A graphic bytes measure was developed to report this information. The number of graphic �les is
also reported.

5.12.3 Page Performance Measures: Objects

Use of applets, controls, scripts, marquees, plug-ins, etc. is discussed extensively in the
literature [Amb�uhler and Lindenmeyer 1999; Flanders and Willis 1998; Nielsen 2000; Rosenfeld and
Morville 1998; Spool et al. 1999; Stein 1997]; speci�c guidance includes the following.

� Avoid gratuitous use of technology [Nielsen 2000; Rosenfeld and Morville 1998].

� Minimize the use of video [Nielsen 2000].

� Avoid using sound �les [Flanders and Willis 1998].

Separate measures were developed to track the number of script and layer �les as well
as the total bytes for these elements, including bytes for the HTML tags within the Web page.
Similarly, the number of object �les and the total bytes for objects is measured. These measures
are used in conjunction with previously-discussed measures to estimate the download speed (see
discussion below). The number of bytes and �les do not capture bytes or �les that may be embedded
in objects and scripts. For example, if an object loads images, then the bytes for the loaded images
are not counted although bytes for the object itself are.

The total number of objects { scripts (both scripts within the HTML page and in an
external script �le), layers, applets, etc. { is also reported.
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5.12.4 Page Performance Measures: Download Speed

The time for a page to fully load is considered a critical issue for Web interfaces [Flanders
and Willis 1998; Nielsen 2000; Scanlon and Schroeder 2000a; Spool et al. 1999; Zona Research
1999]. Speci�c guidance includes the following.

� Download speed should be no more than 10 seconds [Nielsen 2000].

� Home pages greater than 40K result in signi�cant bailouts [Zona Research 1999].

� Perceived download speed matters more than actual download speed [Scanlon and Schroeder
2000a].

Many HTML authoring tools provide download speed estimates to assist Web designers
with optimizing pages. Experience with these estimates on the sample revealed that such estimates
only account for about 50% of the actual download speed; there is also a major discrepancy for
download speed estimates provided by the Bobby tool [Clark and Dardailler 1999; Cooper 1999].
These discrepancies are mostly due to the fact that these tools use a simplistic model, typically
based on the total bytes for pages and in some cases, such as Bobby, incorporate a latency measure
proportional to the total number of �les.

A model of download speed was developed based on the actual download speeds for the
sample. A 56.6K modem was used to measure actual download speeds, since this is currently the
most prevalent modem [DreamInk 2000]. The measurement activity revealed that it is rarely pos-
sible to achieve a 56.6K connection speed with a 56.6K modem; this is due to various technological
limitations of the analog modem [Bash 1997] and possibly poor telephone connections. For 50 con-
nection sessions to three di�erent Internet service providers at various times of the day, the average
and median connection speed were 41.2K with 42.6K as a close second. Hence, a connection speed
of 41.2K was used to measure download speed for the sample; this value is also used for estimat-
ing download speed. All fourteen of the Web pages were downloaded twelve times each. Several
warm-up downloads were performed and browser caching was disabled during this measurement
activity.

Several measures believed to impact download speed were developed: Graphic Bytes and
Graphic File Count (Section 5.12.2), HTML Bytes and HTML File Count (Section 5.12.1), Script
Bytes and Script File Count (Section 5.12.3), Object Bytes and Object File Count (Section 5.12.3),
Object Count (Section 5.12.3), and Table Count (the number of <table> tags in the Web page).
These measures and the actual download speeds were used for Multiple Linear Regression analysis
[Keppel and Zedeck 1989] to determine an equation for predicting download speed. A backward
elimination method was used wherein all of the measures were entered into the equation initially,
and then one by one, the least predictive measure was eliminated. This process was repeated until
the Adjusted R Square (predictive accuracy) showed a signi�cant increase with the elimination of
a predictor. All of the measures were retained by this method, except for the Object Count.

Equation 5.2 depicts the model developed to predict the download speed for a Web page.
The Adjusted R Square for Equation 5.2 is .86 indicating that the measures explained about 86%
of the variance in predictions. The F value is 123.06 and signi�cant at the p < .01 level; this
indicates that the linear combination of the measures signi�cantly predicts the download speed.
Table 5.20 shows the relative contribution of each measure to download speed predictions; all
measure contributions are signi�cant at the p < .01 level.

DownloadSpeed = �0:181 + 0:0003085 � GraphicBytes + (5.2)
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0:0002492 � HTMLBytes +

0:0005748 � ScriptBytes +

0:003211 � ObjectBytes +

10:140 � HTMLFileCount +

�0:385 � Graphic F ileCount +

�1:378 � Script F ileCount +

�6:243 � Object F ileCount +

�0:463 � TableCount

5.12.5 Page Performance Measures: Accessibility

Whether a Web interface is accessible to people with disabilities is discussed in the litera-
ture [Clark and Dardailler 1999; Cooper 1999; Nielsen 2000; Web Accessibility Initiative 1999]. The
consensus is that Web designers adhere to accessibility principles to create sites that serve a broad
user community. In other words, accessible interfaces are of higher quality than non-accessible ones,
although this claim has not been empirically examined.

Results of running the Bobby tool (version 3.2) [Clark and Dardailler 1999; Cooper 1999]
is reported for each Web page; default options are used. Speci�cally, whether the page is Bobby
approved, the number of priority 1, 2, and 3 errors, as well as the number of browser compatibility
errors is reported.

5.12.6 Page Performance Measures: HTML Errors

Whether Web interfaces contain HTML or browser-incompatibility errors is also discussed
in the literature [Bowers 1996; Kim and Fogg 1999; Fogg et al. 2000]. One survey showed that HTML
errors decrease credibility [Kim and Fogg 1999; Fogg et al. 2000]. Hence, the results of running the
Weblint tool (version 1.02) [Bowers 1996], speci�cally the total number of Weblint errors is reported.
Weblint detects numerous HTML errors, such as missing closing tags, broken links, and invalid tag
attributes. For measurement purposes, Weblint is con�gured to support Netscape extensions and
to disable checks for minor HTML errors, such as the use of quotations around attribute values
and specifying alternative text for images. The speci�c command line used is below.

Standardized

Measure CoeÆcient Signi�cance

Graphic Bytes 1.011 0.000

HTML Bytes 0.646 0.000

Script Bytes 0.164 0.005

Object Bytes 0.396 0.000

Graphic File Count -0.559 0.000

HTML File Count 0.380 0.000

Script File Count -0.184 0.001

Object File Count -0.236 0.004

Table Count -0.555 0.000

Table 5.20: Standardized coeÆcients indicating the contribution of each measure to download speed pre-
dictions along with t-test results (2-tailed signi�cance).
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weblint -x Netscape -i -d quote-attribute-value,extension-attribute,extension-markup,img-
alt,attribute-delimiter �lename

5.12.7 Page Performance Measures: Scent Quality

Much has been said about the use of \scent" { hints to help the user decide where to go
next { as a way to improve navigation [Chi et al. 2000; Furnas 1997; Larson and Czerwinski 1998;
Miller and Remington 2000; Nielsen 2000; Rosenfeld and Morville 1998; Sawyer et al. 2000; Spool
et al. 1999; Spool et al. 2000]. Speci�c guidance includes the following.

� Use clear headings with related links (i.e., link clustering) to enhance scent [Spool et al. 2000].

� E�ective navigation requires small pages (views), few clicks between pages, and strong scent
[Furnas 1997].

� Weak scent (i.e., ambiguous link text) impedes navigation [Chi et al. 2000; Miller and Rem-
ington 2000; Spool et al. 1999; Spool et al. 2000].

� Avoid using `Click Here' for link text [Nielsen 2000].

� Use breadcrumbs (i.e., displaying a navigation trail) rather than long navigation bars [Nielsen
2000].

� Use link titles to help users predict what will happen if they follow a link [Nielsen 1998b].

Many of these suggestions are diÆcult to measure in an automated manner. Furthermore,
it is diÆcult to gauge users' understanding of link text. Nonetheless, several research e�orts have
yielded computational models of scent [Chi et al. 2000; Chi et al. 2001; Miller and Remington 2000;
Pirolli and Card 1995; Pirolli et al. 1996; Pirolli 1997]. For Web navigation, the most promising
approach compares proximal cues on the source page (link text, text surrounding the link, graphics
related to a link, and the position of the link on the page) to text on the destination page [Chi et al.
2000; Chi et al. 2001; Pirolli et al. 1996]; this approach also considers the site's linkage topology
and usage patterns from server log data. The authors have used this approach for predicting how
users will navigate a site given some information need as well as for inferring users' information
needs from navigation patterns. Several information retrieval approaches, such as TF.IDF (Term
Frequency by Inverse Document Frequency) and simple word overlap [Baeza-Yates and Ribeiro-
Neto 1999], have been used for determining similarity between the link text and destination page
text.

The approach discussed in [Chi et al. 2000; Chi et al. 2001; Pirolli et al. 1996] was used
as a starting point for developing eighteen scent quality measures. Given the nature of the Metrics
Computation Tool, it was not possible to incorporate site topology and usage data into these
measures; this would require exhaustive site crawling and access to server logs. Furthermore,
simple word overlap is used as opposed to TF.IDF or other information retrieval algorithms, since
it does not require a large collection of pages for each site. The measures focus on assessing content
similarity as follows.

Source Page Text vs. Destination Page Text: This comparison establishes whether or not
the content is similar between the two pages. If there is a high similarity, one would expect
the link text similarity to reect this.
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Link Text vs. Destination Page Text: Link text includes the actual words in the link (includ-
ing image alt attributes for graphic links) as well as twelve good words before and after the
link text; if an image precedes or follows a link, text is extracted from the image's alt at-
tribute if speci�ed. If there is a high similarity between text on the source and destination
pages, then this comparison should reect this similarity. If not, this may indicate poor scent
quality.

Source Page Title vs. Destination Page Title: This comparison is mainly to assess whether
page titles vary between pages in the site. As discussed in Section 5.4.2, Nielsen [2000]
suggests that designers use di�erent page titles for each page. A similar page title consistency
measure was developed to assess variation in page titles throughout the site; this measure
will be discussed in Section 5.13.1.

For the �rst two comparisons, two forms of page text are considered: visible words (page
title, headings, and body text) and all words (page title, headings, body text, meta tags, invisible
text, and image alt text). The �rst type reects content that can be seen by users during browsing,
while the latter type reects text used for searching, speci�cally indexing documents for searching.

A Java program adapted from one developed by Marti Hearst is used for the comparisons.
The program employs simple word overlap and reports several measures for each comparison: 1.
the maximum number of terms (good words; Section 5.4.12) considered between the source and
destination text (link, title, or page contents); 2. the number of unique terms in the source text
(link, title, or page contents); 3. the number of terms that appear in both the source and destination
text (hits); and 4. the weighted score for the common terms. For the weighted score, each term
in the source text is assigned a weight equal to the number of times it appeared in the source
text; frequently-used terms will have a higher weight. When the term appears in the destination
text, this weighted score is used for each hit. The actual word overlap is a ratio of these measures
( hits
unique terms

and score
terms

) and as such is not considered. The terms and unique terms are reported
simply for reference. The eighteen scent quality measures are summarized below; these measures
are associated with the destination page as determined by site crawling order.

Source Page Text vs. Destination Page Text Measures: visible text (browsing): terms, unique
terms, hits, and score; and all text (searching): terms, unique terms, hits, and score.

Link Text vs. Destination Page Text Measures: visible text (browsing): terms, unique terms,
hits, and score; and all text (searching): terms, unique terms, hits, and score.

Source Page Title vs. Destination Page Title Measures: all text (browsing and searching):
terms, unique terms, hits, and score.

There are many ways to express similar concepts; however, term expansion is not used.
Another major limitation of these measures is that they do not reect subjective preferences or
whether users understand the terms. Although the measures are computed with high accuracy,
this is not a reection of how accurately they align with users' perceptions. Ideally, a controlled
study focusing on content similarity would be conducted. The study would capture user ratings of
the similarity between link text and text on destination pages. Study results could then be used to
develop better measures of scent quality. This will be addressed with future work.

One major limitation of the link text measures is that the proximity of the associated
link text (i.e., twelve good words before and after a link) is not considered. For example, it is
possible for associated link text to be taken from a di�erent paragraph or even a navigation bar,
since the order that text appears in the HTML is used. Image processing is needed to ensure that
the associated link text is actually part of the content surrounding a link.
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5.13 Site Architecture Measures

Tables 5.21 and 5.22 summarize sixteen site architecture measures for assessing the fol-
lowing aspects of Web interfaces.

1. How consistent are page elements?

2. How consistent is the formatting of page elements?

3. How consistent is page formatting?

4. How consistent is page performance?

5. What is the overall consistency?

6. How big is the site? Big in this context refers to the breadth and depth of pages as well as
the total number of pages based on crawling with the Site Crawler Tool.

5.13.1 Site Architecture Measures: Consistency

The consistency of page layout across the site has been discussed extensively in the lit-
erature [Flanders and Willis 1998; Fleming 1998; Nielsen 2000; Mahajan and Shneiderman 1997;
Sano 1996; Sawyer et al. 2000]. Speci�c guidance includes the following.

� Consistent layout of graphical interfaces result in a 10{25% speedup in performance [Mahajan
and Shneiderman 1997].

� Use consistent navigational elements [Flanders and Willis 1998; Fleming 1998].

� Use several layouts (e.g., one for each page type) for variation within the site [Sano 1996].

� Consistent elements become invisible [Sawyer et al. 2000].

These guidelines are obviously contradictory; hence, several measures for assessing site
consistency were developed. Speci�cally, the variation in text elements and formatting, page for-
matting, page performance, and other aspects are computed. Variation is an inverse measure of
consistency; larger variation indicates less consistency and vice versa. The variation measures are
based on the Web site aspects presented in Figure 5.5. The average variation for measures within
each block of Figure 5.5 is computed, as well as overall element variation (across the bottom row
of measures), overall formatting variation (2nd and 3rd row), and overall variation (all rows except
the top one). Recall that the scent quality measures include the page title hits and score to assess
the similarity of page titles between pairs of pages (see Section 5.12.7); variation in these measures
is also computed. The following process was followed in developing these site consistency measures.

1. Compute the CoeÆcient of Variation (CoV, 100 * �
�x
, where � is the standard deviation, and

�x is the mean) [Easton and McColl 1997] for each measure across all of the pages in a site.
The CoV is a standard, unitless measure of the amount of variance in a data set.

2. Compute the median CoV for relevant measures within a category (text element, graphic
formatting, and so on). The median does not require data that is normally distributed with
equal variances; thus, it is more appropriate in this case than the mean. The median CoV is
reported as the variation measure (i.e., text element variation, graphic formatting variation,
etc.).
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

How consistent are page elements?
Text Variation in

p
{ { 100.0%

Element text elements
Variation across pages
Page Variation in

p p
{ { 100.0%

Title page titles
Variation across pages
Link Variation in

p
{ { 100.0%

Element link elements
Variation across pages
Graphic Variation in

p
{ { 100.0%

Element graphic elements
Variation across pages

How consistent is formatting of page elements?
Text Variation in

p
{ { 100.0%

Formatting text formatting
Variation across pages
Link Variation in

p
{ { 100.0%

Formatting link formatting
Variation across pages
Graphic Variation in

p
{ { 100.0%

Formatting graphic formatting
Variation across pages

How consistent is page formatting?
Page Variation in

p
{ { 100.0%

Formatting page formatting
Variation across pages

How consistent is page performance?
Page Variation in

p
{ { 100.0%

Performance page performance
Variation across pages

What is the overall consistency?
Overall Variation in

p
{ { 100.0%

Element all elements
Variation across pages
Overall Variation in

p
{ { 100.0%

Formatting all formatting
Variation across pages

Table 5.21: Summary of site architecture measures (Table 1 of 2). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.
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Aspects Assessed Accuracy
Measure Description ID ND GD ED Hit Miss Avg.

What is the overall consistency?
Overall Variation in

p
{ { 100.0%

Variation elements,
formatting, and
performance
across pages

How big is the site?
Page Count Number of

p
{ { 100.0%

crawled pages
Maximum Maximum

p
{ { 100.0%

Page Depth crawl depth
Maximum Maximum

p
{ { 100.0%

Page Breadth pages crawled
at a level

Median Median
p

{ { 100.0%
Page Breadth pages crawled

across levels

Table 5.22: Summary of site architecture measures (Table 2 of 2). The aspects assessed { information
design (ID), navigation design (ND), graphic design (GD), and experience design (ED) { are denoted with
a
p
. Hit and miss accuracies are only reported for discriminating measures.

Figure 5.5: Aspects associated with Web interface structure. This is a repetition of Figure 5.2.
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Site variation measures are only computed for sites with at least 5 pages of metrics data.
Data from 333 sites discussed in Chapter 6 was explored to determine the median CoV for each
page-level measure. For each group of measures, metrics that exhibited median CoeÆcients of
Variation smaller than 250% were eliminated, since they could potentially dampen the variation in
the remaining measures. This cuto� eliminated nine text element measures, including the Word,
Page Title, and Good Body Word Counts discussed in Sections 5.4.1 and 5.4.2. Page depth and
type as well as the term measures used for scent quality assessment (e.g., Visible Page Text Terms
and All Unique Link Text Terms; Section 5.12.7) were also excluded, since they are intended to be
used for reference. Page Title Variation only considers the page title hits and scores; this provides
some insight about the use of di�erent page titles throughout the site [Nielsen 2000].

Although the site variation measures are computed with high accuracy, this is not a
reection of how accurately the measures align with users' perceptions. How users gauge site
consistency will be veri�ed with a future study. Analysis in Chapter 6 should identify a subset
of measures for these studies. Future work will also entail measuring the consistent use of image,
script, stylesheet, and other �les across pages in a site.

Another limitation of the site variation measures is that all types of pages (home, link, and
content) are grouped together in computations. For example, link pages may have a substantially
larger number of links than content pages, which could inate the link element variation. A
better approach would be to assess the variation within home, link, content, form, and other
pages separately and then use a weighting factor to aggregate across page types. Unfortunately,
this computation would require at least �ve pages of each type, which may not always be possible.

5.13.2 Site Architecture Measures: Size

The size of a site (i.e., the number of pages or documents) is used in the literature for
classifying sites into genres, such as newspaper, course outline, and book [Bauer and Scharl 2000;
Shneiderman 1997]. In addition, the breadth (how many links are presented on a page) and depth
(how many levels must be traversed to �nd information) of pages within the site has been associated
with the quality of the information architecture [Chi et al. 2000; Fleming 1998; Furnas 1997;
Larson and Czerwinski 1998; Miller and Remington 2000; Nielsen 2000; Rosenfeld and Morville
1998; Sawyer et al. 2000; Spool et al. 1999; Spool et al. 2000]. Several usability studies have been
conducted to provide guidance about the breadth and depth of sites. For example, Larson and
Czerwinski [1998] suggest that Web designers use moderate levels of breadth with minimal depth
(e.g., two levels) in the information architecture. As another example, Rosenfeld and Morville
[1998] suggest that Web designers minimize the number of options on the home page to ten and
minimize depth to less than �ve levels.

Several measures were developed to possibly provide some insight into the size, breadth,
and depth of a site, including the Page Count, Maximum Page Depth, and Maximum and Median
Page Breadths. These measures are based on the con�guration of the crawler at the time of data
collection as well as the number of pages for which page-level metrics are computed. Hence, they
may not accurately reect actual site characteristics even though they are computed accurately. If
the crawler is con�gured for unlimited crawling and page-level metrics are computed for all of the
downloaded pages, then these measures will actually reect the degree to which the site conformed
to crawler restrictions (e.g., pages at subsequent levels were not visible at the previous level, pages
are not advertisements, guestbook, or chat room pages, and pages are not pdf, Word, or other
documents). Future work will involve capturing more de�nitive measures of site size.
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5.14 Summary

This chapter presented a view of Web interface structure and 157 highly-accurate, page-
level and site-level measures for quantifying many aspects, including the amount and type of text
on a page, page download speed, colors and fonts used on the page, similarity in content between
pairs of pages, and the amount of variation in measures across pages in a site. Quantifying Web
interface aspects makes it possible to develop statistical models for distinguishing good interfaces;
this is the subject of the next chapter. As shown in this chapter, design guidance can sometimes be
contradictory; quantifying Web interface aspects also makes it possible to provide concrete design
guidance.

Subsequent chapters use quantitative measures computed for a large collection of expert-
rated Web sites to develop several statistical models for assessing Web interface quality. Chapter 7
describes a study on linking the pro�les to usability. Chapter 8 demonstrates the use of pro�les to
assess an example site, and Chapter 9 describes a study that examines the eÆcacy of the pro�les
in improving the design of the example site and four others. Finally, Chapter 10 demonstrates the
use of statistical models to examine many Web design guidelines presented in this chapter.
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Chapter 6

Pro�les of Highly-Rated Web

Interfaces

6.1 Introduction

The focus of this chapter is the development of statistical models or pro�les to support
assessing Web site quality. Although statistical model development is a common methodology
used for solving many problems from evaluating credit card applicants to personalizing information
displayed to Web site visitors, this approach has not been previously used for evaluating Web
sites. The use of extensive quantitative measures (described in Chapter 5) combined with Internet
professionals' ratings for a large collection of Web sites makes it possible to apply model development
techniques towards the problem of automated analysis of Web interfaces.

This chapter begins with a brief discussion of two prior studies that demonstrated the
feasibility of developing statistical models to predict interface quality. Then, it describes the most
recent study that shows that sophisticated statistical models can be developed to predict interface
quality at both the page and site levels while taking into consideration the type of content on a
site and the functional style of a page, for example. A shorter version of the study is scheduled for
publication [Ivory and Hearst 2002].

6.2 Background: Prior Pro�le Development Work

Two prior studies by this author established that statistical models could be developed
to predict interface quality from quantitative Web interface measures and corresponding expert
ratings [Ivory et al. 2000; Ivory et al. 2001]. The �rst study reported a preliminary analysis of a
collection of 428 Web pages [Ivory et al. 2000]. Each page corresponded to a site that had either
been rated by Internet experts or had no rating. The expertise ratings were derived from a variety
of sources, such as PC Magazine's Top 100, WiseCat's Top 100, and the �nal nominees for the
1999 Webby Awards; if a site was acknowledged by one of these sources, then it was considered to
be rated. For each Web page, twelve quantitative measures having to do with page composition,
layout, amount of information, and size (e.g., number of words, links, and colors) were computed.

Results showed that six measures { text cluster count, link count, page size, graphics count,
color count, and reading complexity { were signi�cantly associated with rated sites. Additionally,
two strong pairwise correlations for rated sites, and �ve pairwise correlations for unrated sites were
revealed. Predictions about how the pairwise correlations were manifested in the layout of the
rated and unrated sites' pages were supported by inspection of randomly selected pages. A linear
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discriminant classi�er applied to the groups (rated versus unrated) was able to classify pages into
the two groups with 63% accuracy. The study also showed that the predictive accuracy could be
improved by considering the functional type { home or other { in models.

The second study reported an analysis of 1,898 pages from 163 sites evaluated for the
Webby Awards 2000 [The International Academy of Arts and Sciences 2000; Ivory et al. 2001].
At least three Internet professionals (referred to as expert judges) evaluated sites on six criteria:
content, structure and navigation, visual design, functionality, interactivity, and overall experience;
the six criteria were highly correlated and were summarized with one factor derived via principal
components analysis [Sinha et al. 2001]. Pages were from sites in six topical categories { community,
education, �nance, health, living, and services { and represented several groups of sites, as rated
by judges: good (top 33% of sites); \not good" (remaining 67% of sites), and poor (bottom 33% of
sites). All of the quantitative measures examined in the �rst study were used, except for reading
complexity. The reading complexity measure { the Gunning Fog Index [Gunning 1973] { was not
used in this study because it was not computed for many small pages; the index requires at least
a hundred words on a page for computation.

The analysis methodology of the �rst study was replicated to develop two linear discrimi-
nant classi�er models: 1. distinguishing pages from good and not good sites; and 2. distinguishing
pages from good and poor sites. For the �rst model, the predictive accuracy was 67% when content
categories (e.g., community and education) were not taken into account and ranged between 70.7%
and 77% when categories were assessed separately. The predictive accuracy of the second model
ranged between 76% and 83%. Analysis of individual measures revealed that the word count could
be used to characterize sub-groups of good pages. For example, good pages with a low word count
(66 words on average as compared to 230 and 827 words for medium and large pages, respectively)
had slightly more content, smaller page sizes, less graphics, and used more font variations than
corresponding not-good pages.

6.3 Data Collection

The analysis in this chapter uses a large collection of pages and sites from the Webby
Awards 2000 dataset [The International Academy of Arts and Sciences 2000] and is similar to the
second study [Ivory et al. 2001]. This dataset as well as the analysis data are described below.

6.3.1 The Webby Awards 2000

The Webby Awards dataset is a unique untapped resource, as it appears to be the largest
collection of Web sites rated along one set of criteria. For the 2000 awards, an initial pool of 2,909
sites were rated on overall quality as well as �ve speci�c criteria: content, structure & navigation,
visual design, functionality, and interactivity. Additionally, the Web sites were assigned into 27
content categories, including news, personal, �nance, services, sports, fashion, technology, arts, and
weird. A panel of over 100 judges from The International Academy of Digital Arts & Sciences used
a rigorous evaluation process to select winning sites. Webby Awards organizers state the judge
selection criteria as follows:

\Site Reviewers are Internet professionals who work with and on the Internet. They
have clearly demonstrable familiarity with the category in which they review and have
been individually required to produce evidence of such expertise. The site reviewers
are given di�erent sites in their category for review and they are all prohibited from
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reviewing any site with which they have any personal or professional aÆliation. The
Academy regularly inspects the work of each reviewer for fairness and accuracy."

The judging takes place in three stages: review, nominating, and �nal; only the list of
nominees for the �nal round are available to the public. Anyone can nominate any site to the
review stage; nearly 3,000 Web sites were nominated in 2000. The analysis in this chapter focuses
solely on sites evaluated during the review stage. Sinha et al. [2001] conducted an in depth analysis
of judges' ratings for this stage and found that the content criterion was the best predictor of the
overall score, while visual design was a weak predictor at best. However, all of the criteria are highly
correlated and can be summarized with a single factor derived via principles component analysis
[SPSS Inc. 1999]; this factor (referred to as the Webby factor) explained 91% of the variance in the
criteria.

For the current study, sites were selected from six content categories { community, edu-
cation, �nance, health, living, and services { as described below.

Community. \Sites developed to facilitate and create community, connectedness and/or commu-
nication. These sites can target either a broad-based or niche audience."

Education. \Sites that are educational, promote education, or provide online curriculum. This
could include educational content for children or adults, resources for educators, and `distance
learning' courses."

Finance. \Sites relating to �nancial services and/or information. These include online stock trad-
ing, �nancial news, or investor services."

Health. \Sites designed to provide information and resources to improve personal health. These
may include medical news sites, health information, and online diagnosis. Health includes
not only medicine but also includes alternative and mental health or �tness Web sites."

Living. \Sites which provide content about how to go about daily life or about elements that
touch the personal side of life. Living includes gardening, home improvement, interior design,
architecture, food, parenting, and similar subjects."

Services. \Sites that allow real world activities to be done online. These include sites that help
people �nd jobs, houses, dates, or which otherwise facilitate o�ine activities from the key-
board."

These categories were selected because they were both information-centric (a primary goal
is to convey information about some topic) and contained at least 100 sites. Although some sites
in the �nancial and services categories had some functional aspects, such as looking up a stock
chart or submitting a resume, most of the pages on these sites provided information. Three groups
{ good (top 33% of sites), average (middle 34% of sites), and poor (bottom 33% of sites) { were
de�ned for analysis based on the overall score. Table 6.1 depicts the overall score used for de�ning
the three classes of pages and sites. It is assumed that ratings not only apply to the site as a whole,
but also to individual pages within the site.

6.3.2 Analysis Data

An early version of the Site Crawler Tool was used to download pages from 1,002 sites
in the �nance, education, community, health, services, and living categories. The crawler was
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Overall Community Education Finance
Good 6.97 6.58 6.47 6.6
Poor 5.47 5.66 5.38 5.8

Health Living Services
Good 7.9 6.66 7.54
Poor 6.4 5.66 5.9

Table 6.1: Overall scores used to classify pages and sites as good (top 33%), average (middle 34%), or poor
(bottom 33%). The rating scale is from one to ten. Average pages and sites fall in the range between the
Top and Bottom cuto�s.

con�gured to crawl two levels from the home page on each site and to download �fteen level-
one pages and 45 level-two pages (three pages linked from each level-one page). This number
of pages was not retrievable on all of the sites. The early crawler version used for this data set
did not follow redirects or download scripts, object �les, or images used as form buttons. Hence,
measures associated with these elements (e.g., script, object, and graphic bytes; Section 5.12) may
be underestimated somewhat.

The Metrics Computation Tool was then used to compute page-level and site-level mea-
sures for downloaded pages that contained at least 30 words and were in English. The 30-word limit
was used to eliminate blank or error message pages but still retain smaller content or form pages.
The �nal data collection consists of 5,346 pages from 639 sites. The collection includes data for
good, average, and poor pages and sites within each of the six content categories. Four of the good
pages have missing Bobby measures; hence, some techniques, such as discriminant classi�cation,
exclude these pages, while other techniques, such as multiple linear regression and decision tree
modeling, do not. Only 333 of the 639 sites have at least �ve downloaded pages as required for
computing the variation measures (see Section 5.13.1); the site-level analysis will consider only this
subset. The small number of sites with at least �ve pages can be attributed to several restrictions
on the Site Crawler Tool, including a 12-minute crawling time limit on sites and the requirement
that pages at subsequent crawling levels were not previously accessible.

All of the measures, except the two reading complexity measures, will be used for analyses
throughout this chapter; reading complexity is excluded due to a high number of cases wherein
reading complexity could not be computed1. However, individual measures used to derive reading
complexity (e.g., fog big word count and fog sentence count; Section 5.4.11) are included in the
analyses. All of the measures were carefully screened to remove outliers within the three classes of
pages; the resulting data was normally distributed with equal variances.

6.4 Pro�le Development Methodology

The goal of pro�le development is to derive statistical models for classifyingWeb pages and
sites into the good, average, and poor classes based on their quantitative measures. As discussed in
Chapter 4, pro�le development encompasses statistical analysis of quantitative measures (page-level
and site-level) and corresponding expert ratings. Prior studies included univariate and multivariate
analyses [Ivory et al. 2000; Ivory et al. 2001]. Statistical techniques, such as correlation coeÆcients
and t-tests for equality of means [Keppel and Zedeck 1989], revealed signi�cant relationships among
individual measures and expert ratings within each class of pages (i.e., rated vs. unrated and

1The Gunning Fog Index requires 100 words for computation; hence, it may not be possible to compute this index
for pages with small amounts of text.
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highly-rated vs. poorly-rated). Two multivariate techniques { multiple linear regression and linear
discriminate analysis { illustrated signi�cant relationships between measures as well as key measures
for predicting the class of each page.

The prior analyses focused on describing key di�erences between the classes of pages; the
analysis in this chapter expands on this work and also explores properties of highly-rated pages.
The three-step analysis approach is described below.

1. Develop a model to classify pages into the three classes { good, average, and poor. Use linear
discriminant classi�cation and decision tree modeling as necessary.

2. For pages accurately classi�ed by the model as good, identify groups of pages with common
properties. Use K-means clustering [SPSS Inc. 1999] in this step.

3. Examine key relationships among measures in each cluster of good pages. Use descriptive
statistics, ANOVAs, and correlation coeÆcients as necessary.

Comparisons are also made among good, average, and poor pages using techniques similar
to step 3 above. The �rst and third steps are also followed for site-level analysis. This chapter
replicates analyses performed in prior studies with several key di�erences: a larger sample of pages
is used; site-level analysis is included; three classes of pages and sites are contrasted (good, average,
and poor versus top and bottom); a larger number of quantitative measures are used; a page type
is incorporated into the analysis; and machine learning techniques are used to develop models in
some cases.

Pro�le development is approached in several phases in this chapter. First, pro�les are
developed across all of the pages irrespective of page types and content categories. Then, page
types (home, link, content, form, and other; see Section 5.11) and content categories (community,
education, �nance, health, living, and services) are considered separately. Finally, pro�les are
developed across sites and within content categories across sites.

The pro�le development work revealed interesting correlations for measures within the
good, average, and poor classes; however, it is not suggested that these correlations caused ratings.
Causality can only be established with controlled usability studies; this will be the focus of future
work. The study of pages and sites modi�ed based on the developed pro�les does suggest that
some design aspects gleaned from the pro�les are viewed favorably by users; Chapter 9 discusses
this study.

6.5 Summary of Developed Pro�les

Several statistical models were developed to classify pages and sites into the three classes
(good, average, and poor) as depicted in Table 6.2. Another model was developed to map pages
into one of the three clusters of good pages: small-page, large-page, and formatted-page. Each of
these models encapsulates key predictor measures and relationships among measures for classifying
pages and sites. All of the models are used by the Analysis Tool (see Chapters 4 and 8) and are
summarized below. The remainder of this chapter discusses each model in detail.

6.5.1 Page-Level Models

Overall Page Quality (Section 6.6): a decision tree model for classifying a page into the good,
average, and poor classes without considering the functional type of a page or the content
category (see below). The model also reports the decision tree rule that generated the pre-
diction.
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Analysis Accuracy
Assessment Type Method Good Average Poor

Page Level (5346 pages)
Overall Quality C&RT 96% 94% 93%
Page Type Quality LDA 84% 78% 84%
Content Category Quality LDA 92% 91% 94%

Site Level (333 sites)
Overall Quality C&RT 88% 83% 68%
Content Category Quality C&RT 71% 79% 64%

Table 6.2: Page and site level classi�cation accuracies. C&RT refers to the Classi�cation and Regression
Tree algorithm. LDA refers to the Linear Discriminant Analysis.

Closest Good Page Cluster (Section 6.7): a K-means clustering model for mapping a page
into one of the three good page clusters { small-page, large-page, and formatted-page. The
model reports the distance between a page and the closest cluster's centroid and the top ten
measures that are consistent with this cluster. The model also reports the top 10 measures
that are inconsistent with the cluster as well as acceptable metric ranges. In both cases,
measures are ordered by their importance in distinguishing pages in the three clusters as
determined from ANOVAs.

Page Type Quality (Section 6.8): discriminant classi�cation models for classifying a page into
the good, average, and poor classes when considering the functional type of a page { home,
link, content, form, and other. The model reports the top 10 measures that are consistent
with the page type. The model also reports the top ten measures that are inconsistent with
the page type and acceptable metric values. In both cases, measures are ordered by their
importance in distinguishing pages in the good, average, and poor classes as determined from
ANOVAs. A separate decision tree model predicts the functional type of a page based on
page-level measures (see Section 5.11). The Analysis Tool also enables users to specify a page
type for analysis.

Content Category Quality (Section 6.9): discriminant classi�cation models for classifying a
page into the good, average, and poor classes when considering the content category of the
site { community, education, �nance, health, living, and services. Each model reports the top
ten measures that are consistent with the content category. Each model also reports the top
ten measures that are inconsistent with the content category and acceptable metric values.
In both cases, measures are ordered by their importance in distinguishing pages in the good,
average, and poor classes as determined by ANOVAs. The Analysis Tool enables users to
specify content categories for analysis.

An e�ort was made to develop good page clusters for each of the content categories and
page types, but the number of good pages in each category was inadequate. K-means clustering
typically converged onto two or three clusters; however, the cluster sizes were disproportionate with
one or two clusters containing less than 30 pages, for instance.

Similarly, an e�ort was made to develop classi�cation models that consider page type
and content category combinations (i.e., predicting good community home pages or good �nance
link pages). Table 6.3 shows the distribution of pages into each content category and page type
combination, and Table 6.4 shows the accuracy of discriminate classi�cation models developed
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Page Type
Cont. Home Link Content Form Other
Cat. G A P G A P G A P G A P G A P

Comm. 67 33 30 190 108 51 212 155 101 51 53 19 22 16 15
Educ. 53 53 35 189 145 119 184 163 171 82 47 29 11 25 37
Finance 24 13 25 67 60 64 107 47 104 30 5 38 5 2 10
Health 20 33 26 61 145 90 67 218 153 21 46 21 3 15 9
Living 36 23 20 113 53 90 80 83 84 30 31 20 8 21 8
Services 15 32 23 60 70 65 71 86 108 20 35 19 5 19 21

Table 6.3: Number of good (G), average (A), and poor (P) pages used to develop models for each content
category and page type combination. Four pages with missing Bobby measures were discarded by the
discriminant classi�cation algorithm.

for each combination. In some cases predictive accuracy is considerably lower, possibly due to
inadequate data. It is also possible that page type mispredictions contribute to lower predictive
accuracy. However, the results suggest that these models could be built with at least 60 pages for
each combination.

6.5.2 Page-Level Models: Key Predictor Measures

Tables 6.5, 6.6, and 6.7 summarize page-level measures that were among the top ten
measures in the models for classifying good, average, and poor pages (described above); ANOVAs
were used to determine the top ten predictor measures for each model. The tables show that several
measures { italicized body word count (text formatting), minimum font size (text formatting),
minimum color use (page formatting), and Weblint errors (page performance) { were among the
top ten predictors in over half of the models. The analysis showed that pages with many italicized
body text words were consistent with poor pages. The analysis also showed that good pages use a
smaller font size (< 9 pt), typically for copyright text, and an accent (color sparsely used; measured
by the minimum color use). Finally, the analysis showed that good pages tended to contain more
HTML coding (Weblint) errors, which correlated with page formatting measures, such as the table
and interactive object counts.

Tables 6.5, 6.6, and 6.7 also show that the other predictor measures vary considerably
across the page-level models. All but three models { other, health, and living page quality { have
one or more text element measures as key predictors. Only a few models (overall, home, health, and
living page quality) have link element measures as key predictors; the health page quality model
has four link element measures as key predictors. The graphic element measures are used more so
for the overall and page type quality models than for the content category quality models. The text
formatting, graphic formatting, page formatting, and page performance measures are used fairly
equally among the models. The link formatting measures are used more so for the content category
quality models than for the overall and page type quality models.

The variation among key predictors in the models suggests that characteristics of pages
vary depending upon the context { page type or content category. Consequently, design goals
need to be clari�ed before applying the models towards assessing and improving a Web interface.
Variation in key predictor measures plus the fact that it was possible to get accurate predictions
from a small number of pages in the combined page type and content category models, suggest
that an extensive set of page-level measures, such as the ones developed, is essential to model
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Page Type
Cont. Home Link Content
Cat. G A P G A P G A P

Comm. 79% 64% 83% 99% 100% 96% 97% 99% 92%
Educ. 94% 89% 94% 96% 90% 95% 94% 96% 92%
Finance 75% 85% 84% 100% 100% 100% 100% 100% 100%
Health 75% 64% 89% 98% 97% 98% 99% 99% 98%
Living 61% 70% 55% 93% 94% 92% 100% 98% 99%
Services 60% 69% 65% 100% 100% 100% 100% 100% 100%

Cont. 74% 73% 78% 98% 97% 97% 98% 98% 98%
Cat.
Avg.

Page Type
Cont. Form Other
Cat. G A P G A P

Comm. 92% 93% 74% 73% 88% 80%
Educ. 83% 83% 90% 100% 88% 89%
Finance 100% 100% 95% 100% 100% 90%
Health 100% 98% 95% 100% 53% 100%
Living 100% 94% 85% 75% 95% 100%
Services 90% 100% 100% 100% 79% 95%

Cont. 94% 95% 90% 91% 84% 92%
Cat.
Avg.

Table 6.4: Classi�cation accuracy for predicting good (G), average (A), and poor (P) pages for each content
category and page type combination.
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Overall Page Type Qual. Content Cat. Qual. Use
Measure Quality H L C F O C E F H L S Freq.

Text Element Measures
Link Word Count

p p
16.67%

Good Link
p p

16.67%
Word Count
Graphic

p p
16.67%

Word Count
Good Graphic

p p
16.67%

Word Count 16.67%
Spelling

p p p
25.00%

Error Count

Link Element Measures
Text Link Count

p
8.33%

Link Count
p p

16.67%
Internal

p p p
25.00%

Link Count
Redundant

p
8.33%

Link Count
Link Graphic

p
8.33%

Count

Graphic Element Measures
Graphic Ad Count

p p p p
33.33%

Animated Graphic
p p p

25.00%
Ad Count

Text Formatting Measures
Italicized Body

p p p p p p p
58.33%

Word Count
Exclaimed Body

p
8.33%

Word Count
Bolded Body

p
8.33%

Word Count
Minimum

p p p p p p p
58.33%

Font Size
Body Color Count

p
8.33%

Text Cluster
p

8.33%
Count
Link Text

p
8.33%

Cluster Count
Text Column

p p p
25.00%

Count

Table 6.5: Key measures used for predictions in the page-level models; all of these measures were among
the top 10 predictors for at least one model (Table 1 of 3). The page type quality models are for home
(H), link (L), content (C), form (F), and other (O) pages. The content category models are for pages from
community (C), education (E), �nance (F), health (H), living (L), and services (S) sites. A

p
indicates

whether a measure was among the top 10 predictors for a model. The use frequency reects the percentage
of time a measure is among the top predictors across all of the models.
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Overall Page Type Qual. Content Cat. Qual. Use
Measure Quality H L C F O C E F H L S Freq.

Link Formatting Measures
Link Color Count

p
8.33%

Standard Link
p p

16.67%
Color Count
Non-Underlined

p p p
25.00%

Text Links

Graphic Formatting Measures
Minimum

p p p p
33.33%

Graphic Width
Minimum

p
8.33%

Graphic Height

Page Formatting Measures
Minimum

p p p p p p p
58.33%

Color Use
Interactive

p p
16.67%

Object Count
Search Object

p p p
25.00%

Count
Good Text

p
8.33%

Color
Combinations
Neutral Text

p
8.33%

Color
Combinations
Good Panel

p
8.33%

Color
Combinations
Bad Panel

p
8.33%

Color
Combinations
Vertical Scrolls

p
8.33%

Horizontal Scrolls
p

8.33%
Serif Font Count

p
8.33%

Undetermined
p

8.33%
Font Style Count
Fixed Page

p
8.33%

Width Use
Internal

p
8.33%

Stylesheet Use
Self Containment

p
8.33%

Table 6.6: Key measures used for predictions in the page-level models; all of these measures were among
the top 10 predictors for at least one model (Table 2 of 3). The page type quality models are for home
(H), link (L), content (C), form (F), and other (O) pages. The content category models are for pages from
community (C), education (E), �nance (F), health (H), living (L), and services (S) sites. A

p
indicates

whether a measure was among the top 10 predictors for a model. The use frequency reects the percentage
of time a measure is among the top predictors across all of the models.
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Overall Page Type Qual. Content Cat. Qual. Use
Measure Quality H L C F O C E F H L S Freq.

Page Performance Measures
Graphic

p
8.33%

File Count
HTML File Count

p
8.33%

Script File Count
p

8.33%
Script Bytes

p
8.33%

Object Count
p p p p

33.33%
Table Count

p
8.33%

Bobby Approved
p

8.33%
Bobby Priority

p
8.33%

1 Errors
Bobby Priority

p p p
25.00%

2 Errors
Bobby Browser

p p p p
33.33%

Errors
Weblint Errors

p p p p p p p
58.33%

Visible Page
p

8.33%
Text Hits
All Page

p
8.33%

Text Hits
Visible Link

p
8.33%

Text Hits
Visible Link

p
8.33%

Text Score
All Link

p
8.33%

Text Hits
Page Title

p p
16.67%

Hits
Page Title

p p p
25.00%

Score

Table 6.7: Key measures used for predictions in the page-level models; all of these measures were among
the top 10 predictors for at least one model (Table 3 of 3). The page type quality models are for home
(H), link (L), content (C), form (F), and other (O) pages. The content category models are for pages from
community (C), education (E), �nance (F), health (H), living (L), and services (S) sites. A

p
indicates

whether a measure was among the top 10 predictors for a model. The use frequency reects the percentage
of time a measure is among the top predictors across all of the models.
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development. Both prior metric studies used only a small subset of measures and a larger number
of pages than the combined models, but the predictive accuracy was considerably less. Hence, it
appears that the high accuracy of the developed models is largely attributable to the exhaustive
set of measures.

6.5.3 Site-Level Models

One limitation of the site-level models below is that they do not take page-level quality
into consideration. Thus, it is possible for a site to be classi�ed as good even though all of the pages
in the site are classi�ed as poor and vice versa. To remedy this situation, the median predictions
for pages in the site are also reported by the Analysis Tool. These median page-level predictions
need to be considered in determining the overall quality of a site.

Overall Site Quality (Section 6.10): a decision tree model for classifying a site into the good,
average, and poor classes without considering the content category (see below). The model
also reports the decision tree rule that generated the prediction.

Median Overall Page Quality (Section 6.10): predictions from the overall page quality model
(described in Section 6.6) are used to derive the median overall page quality; the median over-
all page quality is then used to classify a site into the good, average, and poor classes. These
predictions need to be considered in conjunction with predictions from the overall site quality
model above. The accuracy of this model is the same as the accuracy of the overall page
quality model; hence, no accuracy measure is reported in Table 6.2.

Content Category Quality (Section 6.11): decision tree models for classifying a site into the
good, average, and poor classes when considering the content category of the site { community,
education, �nance, health, living, and services. Each model reports the decision tree rule that
generated the prediction.

Median Content Category Quality (Section 6.11): predictions from the page-level content
category quality models (described in Section 6.9) are used to derive the median content
category quality; the median content category quality is then used to classify a site into the
good, average, and poor classes. These predictions need to be considered in conjunction with
predictions from the site-level content category quality models above. The accuracy of these
models are the same as the accuracy of the content category models for pages; hence, no
accuracy measure is reported in Table 6.2.

To evaluate sites with the site-level models, the Site Crawler Tool (see Chapter 4) needs
to be used to download pages from sites. The crawler should be con�gured to crawl three levels
on each site and to download �fteen level-one pages and three level-two pages linked from each
level-one page.

6.5.4 Site-Level Models: Key Predictor Measures

The maximum page depth was the only signi�cant measure in site quality predictions,
speci�cally for the overall site quality model; this is possibly due to inadequate data, the need for
better site measures, or the need for model building methods. Table 6.2 shows that the site-level
models are considerably less accurate than the page-level models. Future work will explore better
measures and possibly model building methods to improve the site-level models.
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Squared Classi�cation
Canonical Wilks' Chi- Accuracy

Function Correlation Lambda Square Sig. Good Average Poor

1 0.44 0.394 4915.8 0.000 { { {
2 0.29 0.709 1810.5 0.000 { { {

Overall { { { { 76% 67% 74%

Table 6.8: Classi�cation accuracy for predicting good, average, and poor pages using two linear discriminant
functions.

6.6 Overall Page Quality

The goal of this section is to present an overall view of highly-rated pages that can be used
in the future to assess pages without considering the six content categories studied. This analysis
also does not consider page types. The data consists of 5,346 pages { 1,906 good pages (36%),
1,835 average pages (34%), and 1,605 poor pages (30%).

6.6.1 Overall Page Quality: Classi�cation Model

Linear discriminant classi�cation was used to develop a model for classifying all of the
pages into the good, average, and poor classes. All of the measures, except external stylesheet
use, met the criteria for inclusion in model development2. Table 6.8 summarizes key classi�cation
accuracy measures for this model. Since classi�cation is performed for three groups, the algorithm
derived 2 classi�cation functions. The squared canonical correlation indicates the percentage of
variance in the measures accounted for by each discriminant function. Wilks' Lambda indicates a
complementary measure { the proportion of variance not explained by di�erences among groups.
The corresponding Chi-Square for each Wilks' Lambda is computed for reporting signi�cance;
both discriminant functions have signi�cant Wilks' Lambda. The model classi�es pages with 72%
accuracy overall.

Standardized coeÆcients for both discriminant functions illustrate key measures for classi-
fying pages. Measures with standardized coeÆcients greater than one (in absolute value) are listed
below.

Function 1: text element measures { meta tag, good meta tag, page title, and overall page title
word counts; and page performance measures { page title and unique page title terms.

Function 2: text element measures { good page title, and overall good page title word counts, and
fog sentence count; graphic element measure { graphic count; and page performance measures
{ visible page, visible link, all link, and all unique link text terms, page title and unique page
title terms.

Classi�cation accuracy was improved by developing a decision tree with the Classi�cation
and Regression Tree (C&RT) algorithm [Breiman et al. 1984]; 70% of the data was used for training
and 30% for the test sample. The resulting tree contains 144 rules and has an overall accuracy of
94% (96%, 94%, and 93% for good, average, and poor pages, respectively). The tree uses 71 of
the measures; these measures represent all eight of the page-level metric categories { text element
and formatting, link element and formatting, graphic element and formatting, and page formatting

2The page depth, reading complexity, and overall reading complexity measures were excluded from analyses in
this section and others. Page type is also excluded except in sections examining this measure.
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if ((Italicized Body Word Count is missing OR (Italicized Body Word Count � 2.5)) AND
(Minimum Font Size is missing OR (Minimum Font Size � 9.5)) AND (Graphic Ad Count
is not missing AND (Graphic Ad Count > 2.5)))

Class = Good

This rule classi�es pages as good pages if they have: two or fewer italicized body text words;

use a font size of 9pt or less for some text; and more than two graphical ads.

if ((Italicized Body Word Count is missing OR (Italicized Body Word Count � 2.5)) AND
(Minimum Font Size is missing OR (Minimum Font Size � 9.5)) AND (Graphic Ad Count is
missing OR (Graphic Ad Count � 2.5)) AND (Exclaimed Body Word Count is missing OR
(Exclaimed Body Word Count � 12.5)) AND (Exclaimed Body Word Count is not missing
AND (Exclaimed Body Word Count > 11.5)) AND (Bobby Priority 2 Errors is missing
OR (Bobby Priority 2 Errors � 5.5)) AND (Meta Tag Word Count is missing OR (Meta
Tag Word Count � 66)) AND (Emphasized Body Word Count is missing OR (Emphasized
Body Word Count � 174.5)) AND (Bad Panel Color Combinations is missing OR (Bad
Panel Color Combinations � 2.5)))

Class = Average

This rule classi�es pages as average pages if they have: two or fewer italicized body text

words; use a minimum font size of 9pt or less for some text; two or fewer graphical ads;

twelve exclaimed body words (i.e., body text followed by exclamation points); �ve or fewer

Bobby priority 2 errors; 66 or fewer meta tag words; 174 or fewer emphasized body words

(i.e., body text that is colored, bolded, italicized, etc.); and less than two bad panel color

combinations.

if ((Italicized Body Word Count is not missing AND (Italicized Body Word Count > 2.5)))

Class = Poor

This rule classi�es pages as poor pages if they have more than two italicized body text

words.

Figure 6.1: Example decision tree rules for predicting page classes (Good, Average, and Poor).

and performance measures. Figure 6.1 depicts example rules for classifying pages into the good,
average, and poor classes. Model predictions were retained for further analysis.

6.6.2 Overall Page Quality: Characteristics of Good, Average, and Poor Pages

Further analysis was conducted to determine signi�cant di�erences between pages in the
three classes. Speci�cally, one-way analyses of variance (ANOVAs) were computed to identify
measures where the within-class variance is signi�cantly di�erent from the between-class variance.
Correlation coeÆcients were also computed between pairs of predictor measures. The analysis only
considered pages accurately classi�ed by the decision tree { 1,822 good pages, 1,732 average pages,
and 1,486 poor pages.

ANOVAs revealed that all but eight of the 71 measures { unique page title terms, graphic
count, average font size, maximum graphic height, graphic link count, link graphic count, download
time, and whether a page was Bobby approved { were signi�cantly di�erent between the three
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classes of pages. Tables 6.9, 6.10, and 6.11 depict means and standard deviations for each measure.
The contribution of each measure is reported by the F value; F values were sorted to determine a
measure's rank. All of the F values are signi�cant at the .05 level.

The top ten predictors are minimum font size, minimum color use, italicized body word
count, Weblint errors, graphic ad count, link text cluster count, interactive object count, Bobby
priority 2 errors, text link count, and good link word count. Di�erences among good, average,
and poor pages are described below. ANOVAs were also computed between pairs of classes (i.e.,
good vs. average, good vs. poor, and average vs. poor) to gain more insight about similarities and
di�erences among the classes; all di�erences were signi�cant, except as noted below.

� Good pages surprisingly use minimum font sizes of nine points; however, the standard devi-
ation is smaller than those for the other two classes indicating less variance. Inspection of a
random sample of good pages revealed that this minimum font size is often used for footer
text, such as copyright notices. There is no signi�cant di�erence between the minimum font
sizes employed on average and poor pages.

� Average and poor pages have larger minimum color usages than good pages (�ve and six times
vs. four times). Inspection of a random sample of good average, and poor pages suggest that
this results from a tendency for good pages to have at least one sparsely used accent color.

� Good and average pages rarely contain italicized words within body text; there is no signi�cant
di�erence between these two classes. Poor pages contain one italicized body word on average.

� Good pages contain the most Bobby priority 2 and Weblint errors (average of 35 and 19,
respectively), while poor pages contain the fewest errors. There were correlations between
these errors and the number of interactive objects, tables, images, etc. This �nding suggests
that highly-rated pages tend not to conform to accessibility and good HTML coding stan-
dards. It is possible that in some cases good pages (and possibly average and poor pages) are
unnecessarily penalized by these tools. As an example, Bobby requires alternative text to be
provided for all images on a page. However, designers may frequently use blank images as
spacers and may not provide alternative text for them, resulting in the page not being Bobby
approved. On the other hand, if designers did provide alternative text for spacer images, this
may actually impede blind users, since the text will be read by screen readers. Perhaps these
tools need to consider the context in which page elements are being used.

� Good pages typically contain one graphical ad; poor pages are slightly more likely to contain
graphical ads than average pages. An examination of ten sites suggests that ads on good sites
are for well-known entities whereas ads on poor sites are for obscure entities. Kim and Fogg
[1999] conducted a controlled study wherein 38 users rated Web pages (with and without
graphical ads) on credibility (\high level of perceived trustworthiness and expertise") and
found that pages with graphical ads were rated as more credible than those without graphical
ads.

� Good pages contain about 27 text links, while average pages contain 22 and poor pages
contain 19. Poor pages are also less likely to contain link text clusters (areas containing text
links highlighted with color, lists, etc.), while good pages contain slightly more link clusters
than average pages. There is a corresponding higher number of good link words (words in the
link text that are not stop words or `click') on good and average pages than on poor pages.
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Mean Std. Dev.
Measure Good Avg. Poor Good Avg. Poor F val. Rank

Text Element Measures
Good Link Word 47.5 36.2 31.8 42.2 34.5 31.0 83.8 10
Count
Good Meta Tag Word 15.3 10.9 17.0 23.5 17.2 24.5 33.8 23
Count
Meta Tag Word Count 20.8 14.3 21.6 32.1 22.8 31.3 31.6 24
Good Word Count 204.0 175.4 185.5 157.9 142.9 144.2 16.9 32
Word Count 378.0 326.2 345.5 298.3 271.1 273.3 15.4 37
Good Page Title 3.1 3.3 3.4 1.7 1.7 1.9 10.9 44
Word Count
Exclamation Point 1.2 1.0 1.0 1.5 1.4 1.4 9.8 45
Count
Display Word Count 17.1 14.8 16.4 17.5 16.0 17.0 8.2 52
Fog Big Word Count 33.7 32.2 36.4 34.3 34.6 37.6 5.7 59
Body Word Count 264.5 243.3 265.1 232.6 224.9 238.5 4.9 60
Good Body Word 127.3 118.7 129.2 114.9 113.4 118.3 3.9 62
Count

Link Element Measures
Text Link Count 27.4 21.5 18.6 23.0 19.5 16.9 84.2 9
Link Count 41.2 34.1 31.8 28.8 23.9 21.7 63.5 14
Redundant Link Count 7.7 6.6 6.7 7.7 6.4 6.8 13.7 39

Graphic Element Measures
Graphic Ad Count 1.2 0.7 0.7 1.4 0.9 0.8 103.7 5
Redundant Graphic 9.4 7.9 8.8 12.4 10.2 11.0 8.1 54
Count

Text Formatting Measures
Minimum Font Size 9.0 9.3 9.3 0.2 0.7 0.7 247.4 1
Italicized Body Word 0.5 0.5 1.1 0.9 0.9 1.7 139.3 3
Count
Link Text 1.2 1.0 0.6 1.4 1.4 0.8 91.3 6
Count
Text Column Count 4.1 3.4 2.8 3.7 3.0 2.4 76.4 11
Exclaimed Body Word 4.1 3.0 2.3 6.4 4.8 3.7 52.1 18
Count
Text Cluster Count 2.2 1.9 1.5 2.3 2.3 1.5 41.2 21
Capitalized Body Word 1.7 1.2 1.8 2.5 1.5 2.5 37.7 22
Count
Text Positioning Count 3.5 2.8 3.3 3.3 2.8 3.2 20.9 28
Sans Serif Word Count 227.4 185.7 214.4 239.7 203.4 228.1 15.9 34
Display Color Count 1.5 1.3 1.4 0.9 1.0 0.9 15.5 35
Emphasized Body 52.8 51.5 61.4 60.8 56.3 69.2 11.8 43
Word Count

Table 6.9: Means and standard deviations for good, average, and poor pages (Table 1 of 3). All measures
are signi�cantly di�erent (.05 level) and sorted within each category by their contribution to predictions
(Rank column); the rank reects the size of the F value.



159

Mean Std. Dev.
Measure Good Avg. Poor Good Avg. Poor F val. Rank

Text Formatting Measures
Bolded Body Word 11.4 12.8 14.0 16.1 17.4 20.2 9.1 48
Count
Colored Body Word 17.6 20.2 20.6 24.4 26.4 27.4 6.7 55
Count
Serif Word Count 92.4 83.0 83.2 133.2 116.5 124.9 3.2 63

Link Formatting Measures
Standard Link Color 1.1 1.4 1.5 1.2 1.2 1.3 58.8 16
Count

Graphic Formatting Measures
Minimum Graphic 22.9 31.9 20.4 32.5 43.8 28.5 47.1 20
Width
Minimum Graphic 10.1 8.7 9.0 13.7 11.1 12.6 6.2 57
Height
Maximum Graphic 436.9 456.3 439.5 190.1 175.2 176.0 5.8 58
Width

Page Formatting Measures
Minimum Color Use 3.5 5.3 6.6 3.1 5.1 6.7 156.2 2
Interactive Object 3.2 2.2 1.7 3.7 2.9 2.5 91.1 7
Count
Bad Panel Color 1.0 0.7 0.6 1.3 0.8 0.8 70.6 12
Combinations
Vertical Scrolls 2.0 1.6 1.6 1.4 1.0 1.0 60.2 15
Horizontal Scrolls 0.1 0.1 0.0 0.3 0.3 0.2 28.7 25
Color Count 8.0 7.6 7.5 2.7 2.4 2.3 23.0 26
Font Count 5.6 5.3 5.1 2.2 2.5 2.4 22.7 27
Good Text Color 3.4 3.1 3.1 2.2 1.8 1.7 19.2 29
Combinations
Page Pixels 802K 731K 747K 475K 439K 445K 11.8 42
Good Panel Color 0.4 0.5 0.6 0.7 0.7 0.8 8.9 49
Combinations
Browser-Safe Color 5.0 4.9 4.9 1.6 1.6 1.5 4.7 61
Count

Table 6.10: Means and standard deviations for good, average, and poor pages (Table 2 of 3). All measures
are signi�cantly di�erent (.05 level) and sorted within each category by their contribution to predictions
(Rank column); the rank reects the size of the F value.
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Mean Std. Dev.
Measure Good Avg. Poor Good Avg. Poor F val. Rank

Page Performance Measures
Weblint Errors 34.5 26.3 19.1 36.6 27.8 18.4 116.1 4
Bobby Priority 2 4.0 3.6 3.5 1.3 1.1 1.0 87.3 8
Errors
Bobby Browser 13.9 11.5 11.8 7.5 6.3 5.8 66.3 13
Errors
Object Count 1.9 1.3 1.4 2.1 1.4 1.4 55.1 17
Script File Count 0.5 0.2 0.2 1.2 0.6 0.6 52.0 19
All Page Text Terms 305.2 265.7 303.3 214.7 191.3 232.5 18.9 30
Visible Page Text 258.7 221.8 254.9 203.4 175.4 212.4 18.3 31
Terms
Visible Page Text 31.0 28.5 26.4 24.1 22.9 21.9 16.5 33
Hits
Table Count 8.1 7.4 6.9 6.2 5.7 5.7 15.4 36
Script Bytes 1.2K 1.1K 924.0 1.4K 1.5K 1.1K 14.3 38
HTML Bytes 15.4K 14.3K 13.8K 9.5K 9.8K 8.2K 13.0 40
Bobby Priority 1 1.3 1.2 1.3 1.0 0.8 0.8 13.0 41
Errors
All Unique Link Text 133.5 119.4 125.8 101.9 91.2 92.8 9.7 46
Terms
All Page Text Score 141.1 126.3 138.2 106.3 101.5 114.2 9.3 47
Visible Page Text 91.5 81.0 85.8 77.4 70.8 77.6 8.7 50
Score
Visible Unique Link 120.4 108.5 111.4 96.2 87.9 87.6 8.2 51
Text Terms
All Page Text Hits 41.7 37.8 39.2 29.8 28.3 30.2 8.1 53
Page Title Terms 3.8 3.9 4.1 2.4 2.1 2.4 6.6 56

Table 6.11: Means and standard deviations for good, average, and poor pages (Table 3 of 3). All measures
are signi�cantly di�erent (.05 level) and sorted within each category by their contribution to predictions
(Rank column); the rank reects the size of the F value.
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� Good pages appear to be more interactive than pages in the other classes; they contain about
three interactive objects (e.g., search button or pulldown menu). Average and poor pages
contain about two interactive objects.

Exploring large correlations (i.e., r � :5 in absolute value) between pairs of measures
within each sample provided more insight about di�erences among the classes as described below.

� Good pages appear to use colors in various ways. Correlation between the color and display
color counts suggests that these pages use a multi-level heading scheme wherein headings
at each level are di�erent colors. There is also a correlation between good text color and
good panel color combinations suggesting these pages use colored areas and colored text
simultaneously (e.g., in navigation bars). Good pages also use tables to control the formatting
of text links and images. Correlations between redundant link and graphic link counts coupled
with a medium-strength correlation between redundant link and text link counts suggest that
links are presented multiple times in di�erent forms (e.g., as an image in a navigation bar
and as text in a footer).

� Average pages appear to use bad panel color combinations to format link text clusters. Fur-
thermore, the number of good links words is correlated with the number of redundant links
suggesting that good link words may appear for example in navigation bars and footers but
not necessarily in the text. The average and minimum font sizes are correlated suggesting
little variance in text sizes on average pages.

� Poor pages appear to use color to a lesser degree than good and average pages; however, when
colors are used, they are typically overused as discussed previously. Color count is correlated
with the number of interactive objects suggesting that color is used to highlight these objects.
The number of good text color combinations is also correlated with the number of interactive
objects, which are typically formatted with a white background and black text. This suggests
that poor pages tend to use multiple formatting techniques at once. There is a correlation
between redundant graphic count and graphic link count, which suggests that image links
are presented multiple times. This is in contrast to good pages that repeat links in multiple
forms.

Figures 6.2, 6.3, and 6.4 depict example good, average, and poor pages, respectively. These
pages demonstrate many of the discussed properties.

6.7 Good Page Clusters

The decision tree model presented in Section 6.6 accurately classi�ed 1,822 (96%) of the
1,906 good pages from both the training and test sets; these pages were retained for cluster analysis.
K-means clustering [SPSS Inc. 1999] was used to identify sub-groups of similar good pages. This
method requires all measures to be on the same scale; hence, measures were transformed into Z
scores. Each Z score is a standard deviation unit that indicates the relative position of each value
within the distribution (i.e., Zi =

xi��x
�

, where xi is the original value, �x is the mean, and � is the
standard deviation).

K-means clustering converged onto three clusters of good pages. The �rst cluster consists
of 450 pages (24.5%), the second cluster consists of 364 pages (20%), and the �nal cluster consists
of 1,008 pages (55.3%). Tables 6.12, 6.13, and 6.14 contrast means and standard deviations for the
three clusters and depict the rank of each measure based on ANOVA results(i.e., F values). All
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Figure 6.2: Good page exhibiting several key properties of this class: links repeated in multiple forms (text
and images), graphical ads, interactive objects, multi-level colored headings, navigation bars, and variations
in font sizes, including a smaller size for the footer.
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Figure 6.3: Average page exhibiting several key properties of the class: bad panel and text color com-
binations for link text clusters, redundant links, and similar average and minimum font sizes (10pt and
9pt).
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Figure 6.4: Poor page exhibiting several key properties of the class: italicized body text, repeated image
links (images at the bottom right also appear in an area that is not visible), and minimal link text clustering.
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of the decision tree measures were signi�cantly di�erent among clusters, except for the maximum
graphic height.

Nine of the top ten measures are associated with the amount of text on a page, including
the word count, good word count, HTML bytes, and vertical scrolls. Hence, the second and third
clusters could be characterized as representing large and small pages. The large-page cluster is
consistent with a group identi�ed in a prior study by the author [Ivory et al. 2001], while the
small-page cluster is consistent with two groups identi�ed in the same study { low and medium
word count pages. The remaining top ten measure { table count { distinguishes pages in the �rst
cluster as ones that are highly formatted. Pages in the formatted-page cluster contain on average
120 more words than pages in the small-page cluster.

Pages closest to the centroid of each cluster are depicted in Figures 6.5, 6.6, and 6.7.
All of the pages exhibit most of the properties previously discussed for good pages. Pages in the
small-page and large-page clusters are similar in many ways, except for the amount of text on a
page. ANOVAs contrasting these two clusters revealed that they are similar on 13 measures { the
number of meta tag and good meta tag words, script bytes, minimum color use, good page title
words, use of standard link colors, horizontal scrolls, graphical links, download time, and Bobby
approval and priority 2 errors.

Pages in the formatted-page cluster are quite distinct from pages in the small-page and
large-page clusters. They use more text positioning and columns, tables, and text color and panel
color combinations. They also contain more graphics and redundant graphics, graphical ads, and
have smaller minimum image widths and heights; correlations suggest that many of these graphics
are possibly for organizing pages. Pages in this cluster also contain more interactive objects and
colors. The example good page presented in Figure 6.2 belongs to this cluster.

6.8 Page Type Quality

The goal of this section is to show di�erences when the page type { home, link, content,
form, or other { is included in the analysis. This analysis does not consider content categories.
Table 6.15 summarizes the analyzed data.

Linear discriminant analysis was used to distinguish good, average, and poor pages within
each page type, yielding an overall accuracy of 82%. Table 6.16 summarizes the accuracy of each
page type model. These models are 7{15% less accurate than the overall page quality model. Recall
that page types are predicted by a decision tree model with 84% overall accuracy (see Section 5.11).
It is possible that mispredicted pages within each page type category may have negatively impacted
model development.

ANOVAs revealed that the top ten predictor variables varied across page types, although
several predictors from the overall page model were often among the top ten, including the interac-
tive object count, minimum font size, italicized body word count, minimum color use, graphic ad
count, and Bobby and Weblint errors. Key predictors in each page type model are discussed below.
An e�ort was made to develop good page clusters for each of the page types, but the number of
good pages for each type was inadequate.

Home Pages. The top ten measures for classifying good, average, and poor home pages include
the following: graphic ad count (graphic element); object count, Weblint errors, and Bobby
priority 2 errors (page performance); bad panel color combinations (page formatting); link
and internal link counts (link element); italicized and exclaimed body word counts (text
formatting); and link word count (text element). Good home pages contain considerably
more links (internal links in particular) and a corresponding higher number of link words
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Mean Std. Dev.
Measure FP LP SP FP LP SP F val. Rank

Text Element Measures
Word Count 360.6 849.2 215.7 194.7 221.2 140.2 1726.5 1
Good Word Count 203.1 449.3 115.9 110.5 112.8 74.5 1690.6 2
Body Word Count 200.3 621.1 164.4 138.8 196.1 132.4 1317.7 5
Good Body Word 92.4 303.5 79.2 70.6 94.5 65.9 1314.0 6
Count
Fog Big Word Count 23.7 79.1 21.7 20.5 36.4 23.0 730.7 11
Good Link Word 80.0 62.3 27.8 41.9 47.2 26.5 364.9 22
Count
Display Word Count 23.3 29.4 9.8 17.4 20.3 12.1 251.8 32
Exclamation Point 1.8 1.5 0.8 1.6 1.7 1.2 96.0 52
Count
Good Meta Tag Word 23.7 12.0 12.7 25.3 20.6 22.7 38.6 60
Count
Meta Tag Word Count 32.0 16.7 17.3 34.5 28.4 31.2 36.0 61
Good Page Title 2.8 3.3 3.2 1.6 1.7 1.7 16.8 66
Word Count

Link Element Measures
Link Count 67.6 49.5 26.3 25.6 31.2 17.4 525.6 18
Text Link Count 46.7 35.2 16.0 22.3 25.4 13.7 427.6 21
Redundant Link Count 12.6 8.4 5.2 8.6 8.3 5.7 171.2 39
Link Graphic Count 17.3 10.3 9.8 8.9 8.4 8.2 135.3 46

Graphic Element Measures
Graphic Count 45.9 20.9 17.5 20.3 17.9 14.5 477.2 19
Redundant Graphic 21.7 7.5 4.7 13.7 10.7 7.9 452.6 20
Count
Graphic Ad Count 2.2 0.9 0.8 1.5 1.3 1.2 230.1 33
Graphic Link Count 14.7 7.5 7.5 8.2 7.3 7.1 164.7 42

Text Formatting Measures
Text Column Count 8.2 3.8 2.5 3.7 3.3 2.3 598.5 14
Link Text 2.4 1.2 0.7 1.4 1.4 1.0 311.3 26
Cluster Count
Sans Serif Word Count 284.4 422.7 131.5 197.0 343.4 140.1 283.0 27
Text Cluster Count 3.7 3.0 1.2 2.4 2.6 1.5 278.1 29
Display Color Count 2.2 1.7 1.1 0.9 0.8 0.8 261.9 30
Text Positioning Count 5.8 3.7 2.3 3.5 3.4 2.5 214.1 34
Emphasized Body 56.1 102.0 33.6 51.3 73.1 48.2 202.8 36
Word Count
Capitalized Body 1.5 3.5 1.2 2.3 2.9 2.1 136.6 44
Word Count

Table 6.12: Means and standard deviations for the 3 clusters of good pages { formatted-page (FP), large-
page (LP), and small-page (SP) (Table 1 of 3). All measures are signi�cantly di�erent (.05 level) and sorted
within each category by their contribution (Rank column); the rank reects the size of the F value.
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Mean Std. Dev.
Measure FP LP SP FP LP SP F val. Rank

Text Formatting Measures
Bolded Body Word 12.6 20.9 7.3 14.9 19.6 13.5 108.9 50
Count
Italicized Body Word 0.5 1.0 0.3 0.9 1.0 0.7 98.6 51
Count
Serif Word Count 66.5 167.8 76.7 113.6 178.0 111.0 72.9 56
Colored Body Word 26.1 21.6 12.3 24.8 28.2 21.2 55.4 58
Count
Average Font Size 10.2 11.0 10.8 1.0 1.2 1.2 52.1 59
Exclaimed Body Word 5.5 5.4 3.1 7.0 7.3 5.6 29.9 64
Count
Minimum Font Size 8.9 9.0 9.0 0.3 0.2 0.2 7.3 70

Link Formatting Measures
Standard Link Color 0.9 1.2 1.2 1.0 1.2 1.2 9.9 68
Count

Graphic Formatting Measures
Minimum Graphic 3.1 24.9 30.9 7.0 33.5 35.2 136.0 45
Width
Minimum Graphic 2.3 10.8 13.3 4.1 14.1 15.0 116.8 48
Height
Maximum Graphic 493.2 429.5 414.4 130.9 191.2 206.4 30.6 63
Width

Page Formatting Measures
Vertical Scrolls 2.1 3.8 1.2 1.2 1.3 0.9 748.8 9
Page Pixels 888K 1.4M 557K 393K 449K 284K 736.2 10
Color Count 11.1 7.8 6.8 2.6 2.2 1.7 687.7 12
Good Text Color 5.7 3.4 2.4 2.1 2.1 1.5 533.9 17
Combinations
Bad Panel Color 2.1 0.9 0.5 1.3 1.2 1.0 312.3 25
Combinations
Font Count 6.9 6.8 4.7 2.0 2.2 1.7 281.5 28
Good Panel Color 1.0 0.4 0.2 0.8 0.7 0.6 197.7 37
Combinations
Interactive Object 5.7 2.6 2.2 3.8 3.3 3.3 169.5 41
Count
Browser-Safe Color 6.0 5.0 4.7 1.8 1.4 1.3 129.6 47
Count
Minimum Color Use 2.5 3.9 3.8 2.3 3.2 3.3 32.4 62
Horizontal Scrolls 0.0 0.1 0.1 0.2 0.3 0.3 10.3 67

Table 6.13: Means and standard deviations for the 3 clusters of good pages { formatted-page (FP), large-
page (LP), and small-page (SP) (Table 2 of 3). All measures are signi�cantly di�erent (.05 level) and sorted
within each category by their contribution (Rank column); the rank reects the size of the F value.
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Mean Std. Dev.
Measure FP LP SP FP LP SP F val. Rank

Page Performance Measures
Visible Unique Link 99.2 270.6 75.6 75.6 66.6 47.2 1529.7 3
Text Terms
All Unique Link Text 113.5 287.9 86.7 82.9 75.3 51.9 1335.3 4
Terms
HTML Bytes 25.1K 19.9K 9.4K 7.9K 8.3K 5.1K 986.9 7
Table Count 15.3 8.0 4.9 5.5 5.7 3.5 821.9 8
Visible Page Text 189.3 520.6 195.0 152.1 158.2 156.4 646.6 13
Terms
All Page Text Terms 234.6 569.9 241.1 177.1 176.1 162.8 570.0 15
Weblint Errors 73.0 34.1 17.5 37.1 34.5 20.8 569.1 16
Bobby Browser 20.6 13.0 11.2 6.6 7.0 5.9 357.1 23
Errors
Visible Page Text 126.6 239.8 111.8 106.7 105.2 83.0 259.8 31
Score
Visible Page Text 33.3 49.8 23.2 28.5 24.8 16.7 207.0 35
Hits
Bobby Priority 1 2.0 1.3 1.1 1.0 1.0 0.8 173.6 38
Errors
Object Count 3.3 1.6 1.3 2.2 2.2 1.7 170.5 40
All Page Text Hits 43.3 62.8 33.4 34.7 29.7 22.8 160.6 43
All Page Text Score 141.1 126.3 138.2 106.3 101.5 114.2 9.3 47
Bobby Priority 2 4.7 3.8 3.7 1.2 1.3 1.1 114.1 49
Errors
Page Title Terms 2.8 4.8 4.0 2.3 2.4 2.3 85.8 53
Script File Count 1.1 0.5 0.2 1.8 1.2 0.7 84.6 54
Unique Page Title 2.8 4.7 3.9 2.3 2.3 2.2 83.2 55
Terms
Script Bytes 1.8K 1.0K 940.2 1.6K 1.4K 1.2K 68.1 57
Bobby Approved 0.1 0.2 0.2 0.3 0.4 0.4 29.7 65
Download Time 14.5 16.2 16.4 9.6 8.2 8.2 8.1 69

Table 6.14: Means and standard deviations for the 3 clusters of good pages { formatted-page (FP), large-
page (LP), and small-page (SP) (Table 3 of 3). All measures are signi�cantly di�erent (.05 level) and sorted
within each category by their contribution (Rank column); the rank reects the size of the F value.

Page Type Good Average Poor Total

Home 213 187 159 559
Link 680 581 479 1740
Content 721 752 721 2194
Form 234 217 146 597
Other 54 98 100 252

Total 1902 1835 1605 5342

Table 6.15: Number of pages used to develop the page type quality models. Four pages with missing Bobby
measures were discarded by the discriminant classi�cation algorithm.
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Figure 6.5: Page closest to the centroid of the formatted-page cluster (distance = 5.33 total standard
deviation units of di�erence across all measures). Missing images are caused by a de�ciency in the early
version of the Site Crawler Tool.

Sample Classi�cation Accuracy
Page Type Size Good Average Poor

Home 559 83.6% 80.2% 84.9%
Link 1740 80.1% 71.1% 78.3%
Content 2194 79.9% 74.2% 79.6%
Form 597 81.6% 77.0% 87.0%
Other 252 88.9% 76.5% 83.0%

Page Type Average 82.8% 75.8% 82.6%

Table 6.16: Classi�cation accuracy for predicting good, average, and poor pages within page types.
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Figure 6.6: Page closest to the centroid of the large-page cluster (distance = 5.96 total standard deviation
units of di�erence across all measures). Missing images are caused by a de�ciency in the early version of the
Site Crawler Tool.
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Figure 6.7: Page closest to the centroid of the small-page cluster (distance = 3.98 total standard deviation
units of di�erence across all measures). Missing images are caused by a de�ciency in the early version of the
Site Crawler Tool.
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than average and poor home pages. As was found for good pages overall, good home pages
contain two graphical ads on average, while average and poor home pages contain an average of
one graphical ad, respectively. Finally, good home pages use exclamation points to emphasize
body text as opposed to italics; the converse is true for poor home pages.

Link Pages. The top ten measures for classifying link pages include: minimum font size, text
cluster count, and text column count (text formatting); minimum color use and interactive
object count (page formatting); Weblint errors (page performance); graphic and animated
graphic ad counts (graphic element); and link and good link word counts (text element).
Good link pages contain considerably more link and good link words than average and poor
link pages. They also contain more text clusters, which suggests that text headings are used
to organize groups of links. Good link pages also contain �ve text columns versus four and
three for average and poor link pages, which suggests that links are organized into multiple
columns. The last two claims were veri�ed by examining a random sample of good link pages.
Finally, good link pages are more likely to use an accent color unlike average and poor link
pages.

Content Pages. The top predictor measures for classifying content pages include: minimum font
size and italicized body word count (text formatting); minimum color use, good panel color
combinations, and horizontal and vertical scroll counts (page formatting); spelling error count
(text element); page title score and Bobby browser errors (page performance); and minimum
graphic width (graphic formatting). Good content pages require an average of 2.4 vertical
scrolls to read, while average and poor content pages require an average of 1.9 scrolls. This
is because good content pages contain considerably more words than pages in the other cate-
gories; the di�erence is signi�cant. Good content pages also require slightly more horizontal
scrolls (.14 versus .1); however, horizontal scrolling is typically not required for content pages
in any of the classes.

Average and poor content pages are more likely to contain good panel color combinations
than good content pages suggesting that good content pages minimize colored areas on the
page. Good content pages are also less likely to use page titles that are similar to source
page titles suggesting the use of unique page titles among pages. Finally, good content pages
appear to contain two spelling errors versus average and poor content pages that contain one
spelling error. Inspection of a random sample of ten pages in each class revealed that most
spelling errors (according to the Metrics Computation Tool) on good content pages are due
to the use of jargon and abbreviations, such as cyberspace, messaging, groupware, busdev,
and imusic. On the other hand, spelling errors on average and poor content pages tended to
be true errors.

Form Pages. The top ten measures for classifying good, average, and poor form pages include
the following: interactive object count (page formatting); minimum font size, body color
count, and italicized body word count (text formatting); standard link color count (link
formatting); graphic ad count (graphic element); Bobby browser and Weblint errors (page
performance); minimum graphic width (graphic formatting); and graphic word count (text
element). Many of the di�erences among form pages in the three classes mirror di�erences
found with the overall page quality model. In addition, good form pages contain an average
of eight interactive objects, while average and poor form pages contain an average of six
interactive objects, respectively. Good form pages also use fewer than two body text colors
unlike average and poor form pages that use more than two body text colors.
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Content Category Good Average Poor Total

Community 542 365 216 1123
Education 518 433 391 1342
Finance 232 127 241 600
Health 172 457 299 928
Living 267 211 222 700
Services 171 242 236 649

Total 1902 1835 1605 5342

Table 6.17: Number of pages used to develop the content category quality models. Four pages with missing
Bobby measures were discarded by the discriminant classi�cation algorithm.

Sample Classi�cation Accuracy
Content Category Size Good Average Poor

Community 1123 91.5% 87.9% 85.6%
Education 1342 87.8% 83.6% 85.7%
Finance 600 98.3% 98.4% 96.7%
Health 928 89.0% 93.4% 94.3%
Living 700 90.6% 89.1% 90.5%
Services 649 95.3% 95.0% 95.3%

Content Category Average 92.1% 91.2% 91.4%

Table 6.18: Classi�cation accuracy for predicting good, average, and poor pages within content categories.

Other Pages. Recall that this page type broadly represents all remaining graphical (e.g., splash
pages, image maps, and Flash) and non-graphical (e.g., blank, under construction, error,
applets, text-based forms, and redirect) pages; thus, the pages have widely di�erent features.
The top ten measures for classifying other pages include the following: minimum color use and
neutral text color combinations (page formatting); all link text hits, visible link text hits and
score, all page text hits, visible page text hits (page performance); minimum graphic width
(graphic formatting); and italicized and bolded body word counts (text formatting). Many of
the top predictor measures are associated with the quality of scent between the source page's
text and link text and the destination page's text. Good other pages have fewer common
words with source link and page text than average pages but more common words than poor
pages on all of the scent measures. Good other pages are more likely to contain neutral text
color combinations than average and poor other pages. However, the three classes contain
an equal number of good text color combinations, which suggests that good other pages use
multiple text color combinations. Finally, good other pages contain about three bolded body
words, while average and poor other pages contain six and twelve, respectively.

6.9 Content Category Quality (Pages)

The goal of this section is to show di�erences when the content category { community,
education, �nance, health, living, or services { is included in the analysis. The page type is not
considered. Table 6.17 summarizes the analyzed data for each content category.

Linear discriminant analysis was used to distinguish good, average, and poor pages within
each category. The classi�cation models have an overall accuracy of 91%; Table 6.18 summarizes
the accuracy of the each model. The average accuracy for the content category models is about
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7{15% higher than the models developed for page types in Section 6.8. ANOVAs computed over
pages accurately classi�ed by each model revealed that the top ten predictor variables varied across
content categories, although several predictors from the overall page model as well as the page type
models were often among the top ten, including the minimum font size, italicized body word count,
minimum color use, and Bobby and Weblint errors. Key predictors in each content category model
are discussed below.

Community Pages. The top ten predictor measures for classifying good, average, and poor com-
munity pages include the following: minimum font size and undetermined font count (text
formatting); spelling error count (text element); script �le count, object count, and page title
hits and score (page performance); minimum color use (page formatting); non-underlined text
links (link formatting); and animated graphic ad count. Average and poor community pages
were more likely to use fonts that are not recognized as serif or sans serif fonts (i.e., fonts that
are not in the extensive lookup tables) than good pages. Good community pages are more
likely to use scripts and one animated graphic on pages. Good community pages are more
likely to contain text links without visible underlines than poor community pages but less
so than average community pages. Finally, good community pages tend to use more distinct
page titles between pages than the average and poor pages.

Education Pages. Key measures for classifying education pages include: Bobby priority 2 and
browser errors and object bytes (page performance); minimum font size and italicized body
word count (text formatting); minimum color use, �xed page width use, and interactive
object count (page formatting); graphic and good graphic word counts (text element). Good
education pages are less likely to use objects, such as applets, than poor education pages;
there is no signi�cant di�erence between good and average education pages. Good education
pages are more likely to use a �xed page width (typically controlled by tables) than average
and poor education pages. Good education pages contain about three interactive objects,
while average and poor pages contain two and one, respectively. Similarly to other good
pages, good education pages were slightly more likely to contain one graphical ad; however,
this measure did not play a major role in classifying pages.

Finance Pages. The top ten predictor measures for classifying �nance pages include the following:
HTML �le count, script bytes, and page title hits and score (page performance); serif font
count, search object count, good text color combinations, and internal stylesheet use (page
formatting); good graphic word count (text element); and non-underlined text links (link
formatting). There are considerable di�erences in formatting for good �nance pages compared
to average and poor �nance pages. Good �nance pages consist of multiple HTML �les due
to the use of external stylesheets; they are also more likely to use internal stylesheets. Good
�nance pages contain an average of 1.1K bytes (� = 1.2K) for scripts, while average and
poor �nance pages contain 1.9K (� = 1.8K) and 883 bytes (� = 812), respectively. Good
�nance pages use more distinct page titles between pages. They use more good text color
combinations and search objects than average pages but fewer than poor pages; there was no
di�erence in the number of bad and neutral text color combinations. Finally, good �nance
pages are more likely to contain text links without visible underlines and less likely to use
serif fonts.

Health Pages. The top ten predictor measures for classifying good, average, and poor health
pages include the following: Bobby priority 1 and browser errors, Weblint errors, and object
count (page performance); italicized body word count (text formatting); link, link graphic,
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internal, and redundant link counts (link element); and text column count (page formatting).
There are several key di�erences in links on the good, average, and poor health pages. Specif-
ically, good health pages contain an average of 48 links, while average and poor pages contain
33 and 28, respectively. Furthermore, good health pages contain more image, internal, and
redundant links than average and poor health pages. Good health page also start text in
about �ve di�erent places on the page, while average and poor pages start text in three and
two di�erent places, respectively. This suggests that multiple columns are used to layout links
on the page, which was con�rmed by a higher link text cluster count for good health pages.
Good health pages are also more likely to use scripts.

Living Pages. The top ten measures for classifying living pages include: minimum font size (text
formatting); self containment and search object count (page formatting); Weblint errors (page
performance); link and standard link color counts (link formatting); minimum graphic width
and height (graphic formatting); animated graphic ad count (graphic element); and internal
link count (link element). Good and average living pages use an average of three colors for
links, while poor living pages use four. However, good living pages are less likely to use stan-
dard (browser default) link colors than average and poor living pages. They typically contain
one animated graphical ad, one search form, and considerably more internal links than pages
in the other classes. Good living pages are slightly less self-contained (i.e., the page can be ren-
dered solely with the HTML code and associated images as opposed to requiring stylesheets,
scripts, etc.) than average pages, but more so than poor pages; the self-containment measure
on good living pages is largely due to the use of scripts.

Services Pages. The top ten predictor measures for classifying services pages include the follow-
ing: minimum color use, text column count, and search object count (page formatting); We-
blint errors, Bobby approved, table count, and graphic �le count (page performance); spelling
error count (text element); link text cluster count (text formatting); and non-underlined text
links (link formatting). Good services pages are more likely to be Bobby approved than aver-
age and poor pages; this is the only case where this result was found. These pages start text
in more places and use more link text clusters than average and poor pages. Good services
pages are also more likely to contain links without visible underlines and use fewer graphic
�les than average and poor services pages.

6.10 Overall Site Quality

The goal of this section is to present an overall view of highly-rated sites that does not
consider content categories. Most site-level measures require data from at least �ve pages for
computation. Thus, the analyzed data only consists of 333 sites { 121 good sites, 118 average sites,
and 94 poor sites.

To assign sites into the good, average, and poor classes, the C&RT trained on 70% of the
data was used. The resulting tree contains 50 rules and has an overall accuracy of 81% (see Table
6.2 for more details). The accuracy of site predictions is lower than that of the other page-level
models most likely because of a smaller training set; it is also possible that the site-level measures
or prediction method need to be improved. Figure 6.8 depicts example decision tree rules for
classifying sites.

ANOVAs for correctly classi�ed sites revealed that the sites only di�ered signi�cantly on
the maximum depth measure. Table 6.19 shows that the median and maximum breadths crawled
on the good sites are slightly higher than for average and poor sites, although not signi�cantly
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if ((Page Performance Variation is missing OR (Page Performance Variation � 90.2)) AND
(Overall Variation is not missing AND (Overall Variation � 14.49)) AND (Link Element
Variation is not missing AND (Link Element Variation � 29.195)) AND (Link Element
Variation is missing OR (Link Element Variation > 20.98)))

Class = Good

This rule classi�es sites as good sites if they have: 90.2% or less variation in page perfor-

mance; 14.49% or less variation across all measures; and a link element variation between

20.98% and 29.2%.

if ((Page Performance Variation is missing OR (Page Performance Variation � 90.2)) AND
(Overall Variation is missing OR (Overall Variation > 14.49)) AND (Graphic Element Vari-
ation is missing OR (Graphic Element Variation � 185.5)) AND (Text Element Variation
is missing OR (Text Element Variation > 51.845)) AND (Graphic Formatting Variation is
not missing AND (Graphic Formatting Variation > 81.1)) AND (Median Page Breadth is
missing OR (Median Page Breadth � 10)))

Class = Average

This rule classi�es sites as average sites if they have: 90.2% or less variation in page per-

formance; variation across all measures greater than 14.49%; graphical element variation

of 185.5% or less; graphic formatting variation greater than 81.1%; text element variation

greater than 51.85%; and a medium breadth of ten pages or fewer at each level.

if ((Page Performance Variation is not missing AND (Page Performance Variation > 90.2)))

Class = Poor

This rule classi�es sites as poor sites if they have variations in page performance greater

than 90.2%.

Figure 6.8: Example decision tree rules for predicting site classes (Good, Average, and Poor).
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Mean Std. Dev.
Measure Good Average Poor Good Average Poor

Maximum Depth 1.75 1.81 1.94 0.43 0.40 0.24
Median Breadth 7.34 7.21 7.05 4.85 3.99 4.11
Maximum Breadth 9.14 8.95 8.80 4.85 3.99 4.11

Table 6.19: Means and standard deviations for site architecture measures. These measures possibly provide
some insight about the information architecture on good, average, and poor sites.

di�erent. This suggests that the information architectures of good and average sites emphasize
breadth over depth [Larson and Czerwinski 1998; Zaphiris and Mtei 1997].

The lack of signi�cant di�erences on all but one measure suggests that relationships among
measures is very important for classifying sites into the three classes, more so than with page
classi�cation. Examining large, unique correlations between measures on accurately-classi�ed sites
revealed the following.

� Correlations between text element and text formatting variation on good sites suggest that
text formatting is altered as the amount of text increases on pages. Good sites also have
slightly more variation on both of these measures than average and poor sites. Text formatting
variation is also correlated with the maximum and median breadth at each level and the
number of pages crawled on the site, which provides further support that text formatting
varies among pages in good sites.

� Average sites only had one unique correlation { between graphic element and overall element
variation. The overall element variation considers the amount of variation across pages on
text, link, and graphic element measures, including the number of good display text words,
text links, and animated images. The graphic element variation measure considers a subset
of measures examined for the overall element variation measure, namely the graphic element
measures. The large correlation between these two measures suggests that the overall element
variation predominantly reects variation in graphic elements as opposed to the variation in
text and link elements.

� There were thirteen unique correlations between measures on poor sites. Most of the correla-
tions suggest that variations in formatting (text, link, graphic, and page formatting variation)
play a major role in the overall variation and page performance variation measures as opposed
to variation in elements (text, link, and graphic element variation). Poor pages tend to have
less formatting variation than average and good sites, but they have slightly more variation
in page performance and element variation.

One of the limitations of the overall site quality model is that it does not consider the
quality of pages in its predictions, because it is based on a completely di�erent set of measures.
Consequently, it is possible for the overall site quality model to predict that a site is consistent
with good sites, but the overall page quality model predicts that all of the pages in the site are
consistent with poor pages. Recall that the assumption throughout this chapter is that Webby
judges' ratings apply to the site as a whole as well as to all of the pages within the site. Hence,
it is not possible to incorporate page quality into the site quality model at this time. To remedy
this situation, the median computed over predictions for individual pages in the site is reported
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Content Category Good Average Poor Total

Community 34 22 15 71
Education 29 30 24 83
Finance 15 6 14 35
Health 12 27 17 56
Living 20 17 10 47
Services 11 16 14 41

Total 121 118 94 333

Table 6.20: Number of sites used to develop the content category quality models.

Sample Classi�cation Accuracy
Content Category Size Good Average Poor

Community 71 88.2% 59.1% 66.7%
Education 83 79.3% 80.0% 66.7%
Finance 35 73.3% 83.3% 71.4%
Health 56 50.0% 81.5% 82.4%
Living 47 90.0% 76.5% 60.0%
Services 41 81.8% 93.8% 35.7%

Content Category Average 77.1% 79.0% 63.8%

Table 6.21: Classi�cation accuracy for predicting good, average, and poor sites within content categories.

by the Analysis Tool; the predictions are generated by the overall page quality model discussed
in Section 6.6. The median page-level prediction can be considered in conjunction with the site
quality prediction in assessing the quality of a site.

6.11 Content Category Quality (Sites)

The goal of this section is to present an overall view of highly-rated sites that considers
content categories; Table 6.20 summarizes the analyzed data. The C&RT was used to develop
models for classifying the 333 sites into the good, average, and poor classes within the six content
categories. Table 6.21 summarizes the classi�cation accuracy of the decision tree models; accuracy
for predicting poor sites is lower in most cases due to fewer sites. ANOVAs for correctly classi�ed
sites did not reveal signi�cant di�erences in measures. Future work will entail developing a larger
sample size, especially of poor sites, in order to improve predictions. The analysis suggests that a
minimum of 35 sites per class and content category is needed to improve accuracy.

Similarly to the overall site quality model, the Analysis Tool reports the median computed
over predictions for individual pages in the site as a way to incorporate page quality into assessing
site quality within each content category. The predictions are generated by the content category
models for pages; these models are discussed in Section 6.9.

6.12 Summary

This chapter presented several models for predicting expert ratings of pages and sites
and hopefully for assessing Web interface quality as well. Page-level models were developed for
the six content categories and �ve page types in addition to a model that classi�es pages across
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content categories and page types. Page-level models were also developed for content category and
page type combinations, although these models were not discussed in detail; this model building
e�ort demonstrated that it was possible to develop highly-accurate models, provided there were at
least 60 pages for a content category and page type combination. Similarly, site-level models were
developed across content categories as well as within content categories. Due to a smaller sample
of site-level measures, the site-level models were not as accurate as page-level models.

Several key correlations were highlighted by the page-level models, including the use of an
accent color on good pages, the use of fonts smaller than 9 pt for copyright and footer text on good
pages, and the use of italicized body text on poor pages. The page type models showed that the
measures found to be important for predictions were relevant to the functional style of pages. For
example, it was found that good form pages use more interactive objects than average and poor
form pages. Similarly, it was found that good link pages use more links than average and poor link
pages. Overall, the key predictor measures varied across the models suggesting that an exhaustive
set of page-level measures, such as the ones developed, is necessary for accurate predictions. The
analysis also suggests that a broader set of site-level measures needs to be developed to improve
predictions. The maximum crawling depth was the only key predictor for good sites; this measure
in conjunction with the breadth measures suggest that good sites emphasize breadth over depth,
which has been suggested in the literature.

Although some characteristics of pages and sites were presented for each model, more
work needs to be done to better understand the design decisions encapsulated in the developed
pro�les. This is especially important for future work on supporting automated critique of Web
interfaces. Furthermore, the eÆcacy of the developed pro�les needs to be established via user
feedback; this will be addressed in the remaining chapters. Speci�cally, Chapter 7 suggests that
there is a relationship between expert ratings and usability ratings, Chapter 8 demonstrates that
the pro�les can be used to assess and improve the quality of Web sites, Chapter 9 shows that
users prefer pages and sites modi�ed based on the pro�les over the original ones, and Chapter 10
demonstrates that the pro�les can be used to examine established Web design guidelines.
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Chapter 7

Linking Web Interface Pro�les to

Usability

7.1 Introduction

Chapter 6 demonstrated that pro�les of highly-rated Web interfaces could be developed
based on key quantitative measures. However, it is not clear what these pro�les represent { highly
usable, aesthetically-pleasing or perhaps merely popular pages. Two studies were conducted by
the author to provide some insight about what the pro�les represent. The �rst study (discussed
in this chapter) evaluates what went into developing the pro�les of Web interfaces, namely the
expert ratings. The second study (discussed in Chapter 9) evaluates the results of applying the
Web interface pro�les.

This chapter discusses a usability study conducted to determine the relationship between
Webby judges' scores and ratings assigned by participants (non experts) who used sites to complete
tasks. The goal of this study was to determine if judges' scores were consistent with usability ratings
for sites at the extremes of the rating scale (i.e., sites with overall scores in the top and bottom
33% of Webby sites).

The study produced usability ratings for 57 Web sites that were used in the development
of pro�les in Chapter 6. Thirty participants completed the study and rated sites in two conditions:
after simply exploring the site (referred to as perceived usability); and after exploring and com-
pleting three information-seeking tasks on the site (referred to as actual usability). Participants
rated sites in both conditions using the WAMMI usability scale [Kirakowski and Claridge 1998].
The analysis focused on answering the following questions.

� Are Webby judges' scores consistent with perceived usability ratings?

� Are Webby judges' scores consistent with actual usability ratings?

Analysis of study data suggests some consistency between the Webby judges' scores and
both the actual and perceived usability ratings. One of the major limitations of this study is that
it was conducted at least six months after sites were reviewed by Webby judges. Hence, sites
may have undergone major changes in the interim. It may have been possible to use the Internet
Archive1 to determine whether sites had changed; however, the site evaluation dates were unknown
and this information was needed for the assessment. Despite measured consistency between judges'
and participants' ratings, a strong conclusion about judges' scores reecting usability cannot be

1Available at http://www.archive.org/.
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made from this study. The methodology described in this chapter could be repeated in a more
ideal setting to enable stronger conclusions to be made.

7.2 User Study Design

A Web site usability study2 was conducted between November 11, 2000 and November
17, 2000, in accordance with guidelines established by the Committee for the Protection of Human
Subjects (project 2000-1-36). Thirty participants completed a between-subjects experiment wherein
they explored and rated 22 sites in two conditions: simply exploring the site; and completing
information-seeking tasks after exploring the site. Participants rated each site in only one condition.
However, they rated eleven sites after exploring them and the other eleven sites after exploring and
completing tasks on them. A total of 57 sites were evaluated by participants using the WAMMI
(Website Analysis and MeasureMent Inventory) [Kirakowski and Claridge 1998] usability scale.

7.2.1 Study Sites and Tasks

For the analysis, 60 sites were selected from the Webby Awards 2000 dataset studied
in Chapter 6. Half of the sites were from the good sample (top 33% of reviewed sites), and the
other half were from the poor sample (bottom 33% of reviewed sites). All of the sites fell within
the top/bottom cuto�s discussed in Section 6.3.1; this was the case for the overall Webby score
and the Webby factor (variable derived via principal components analysis to summarize the six
rating criterion) across all content categories as well as within each content category. There was
equal representation among the six categories (Community, Education, Health, Finance, Living,
and Services). Furthermore, the selected sites met the following criteria: the site used the English
language; the site was not implemented with Macromedia Flash; and the site did not require login.
Three of the sites became unavailable or malfunctioned during the course of this study; thus, results
are only reported for 57 sites. In some cases participants experienced technical diÆculties; hence,
responses were eliminated in these situations as well.

Three information-seeking tasks were developed for sites. First, sites within each of the
six categories were explored to develop two general tasks, such as �nding information about how
to contact the company or the major product/service o�ered through the site. Table 7.1 contains
the two general tasks developed for each content category. General tasks required participants to
locate information that has been noted as essential to good Web design practices in the literature
[Fogg et al. 2000; Nielsen 2000; Sano 1996]. Each site was then explored to identify a site-speci�c
information-seeking task. These tasks were non obvious, required participants to follow at least
�ve links through the site, and were comparable to tasks chosen for the other sites in the content
category. Tables 7.2 and 7.3 summarize site-speci�c tasks.

A testing interface was developed using HTML forms, JavaScript, and PERL. Figure 7.1
depicts the screens for performing information-seeking tasks in the actual usability condition. In
addition, a script was developed to generate 30 randomized experiment designs (i.e., the original 60
sites where randomly assigned to these experiments). Each experiment consisted of 22 sites, two of
which were for training. The order of site exploration was randomized as well as the presentation
of the three tasks. Two pilot studies were conducted to improve the �nal study design, testing
interface, and testing materials.

2Rashmi Sinha and Marti Hearst provided valuable input into the study design, assisted with recruiting partici-
pants, and facilitated several testing sessions. Sinha also conducted a preliminary analysis of the study data.
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Content
Category Information to locate in the site

Community How to contact the company
What topics are discussed on this site

Education What educational products/services are o�ered through this site
What topics/disciplines does this site address

Finance What is the major �nancial product/service o�ered through this site
Get a sense for whom this site is meant for

Health What topics are discussed on this site
Find contact information for the site

Living Get a sense for whom this site is meant for
What is the major product/service o�ered through this site

Services What is the major product/service o�ered through this site
How to contact the company

Table 7.1: General information-seeking tasks for each content category.

Figure 7.1: Testing interface for completing the information-seeking tasks in the actual usability condition.
The smaller browser window provides instructions, and the larger window displays the site.
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Id Rating Information to locate in the site

Community
1 242 Good Article on computer privacy
1 250 Good A good age to start teaching children to swim
1 255 Good The height of the second tallest mountain in California
1 261 Good How to �nd donated items for your local charity
1 262 Good Discussions on rising heat costs
1 003 Poor Details about the movie The Cell
1 006 Poor Details about the Age of Attention
1 007 Poor Details about recent �ndings in Gamla
1 009 Poor List of items you need for playing rugby
1 015 Poor Details about horsepower

Education
2 205 Good Di�erent kinds of computers
2 208 Good Causes of drought
2 209 Good School voucher issues
2 217 Good Courses on snowboarding
2 218 Good Details about Madagascar
2 012 Poor Bene�ts of water birth
2 013 Poor Leadership case studies
2 016 Poor The student who designed the Iceman poster
2 017 Poor Requirements for being a student anchor
2 018 Poor Details about the Brazil training stress

Finance
3 087 Good Status of car sales in the US
3 098 Good Basic investment options
3 101 Good Details about student loans
3 102 Good Investment strategies for college students
3 103 Good Details about Roth IRAs
3 002 Poor How the market a�ects this company's funds
3 014 Poor How a loan oÆcer evaluates your credit report
3 018 Poor How Theresa Pan became a billionaire
3 019 Poor Return for the best stock picked by Sam Isaly
3 022 Poor How education inuences compensation of �nancial executives

Table 7.2: Site-speci�c information-seeking tasks (Community, Education, and Finance).
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Id Rating Information to locate in the site

Health
4 127 Good Techniques for coping with stress
4 128 Good The vaccine for Lyme disease
4 129 Good Flu shots for elders
4 130 Good Impact of second-hand smoke on asthma su�erers
4 132 Good Latest �ndings on job-related depression
4 005 Poor Links to online health statistics
4 008 Poor Details about e-pharmacy.MD
4 018 Poor Issues that are best suited for online therapy
4 020 Poor Treatment for common colds
4 021 Poor Advice for seeking a second medical opinion

Living
5 137 Good Details about The Zone diet
5 138 Good Using sesame seed in recipes
5 139 Good Taking a virtual tour of New York
5 145 Good Cost for copyrighting software
5 002 Poor Menu for an inexpensive dinner party
5 005 Poor Recipe for Chili Cornmeal Biscuits
5 008 Poor Price list for California wines
5 014 Poor Creating a wish list
5 021 Poor Whether you can recycle the tray from your food package

Services
6 115 Good How to receive faxes online
6 116 Good Cost for a recycled front door window for a 1992 Honda

Civic DX Hatchback
6 122 Good Creating a wish list
6 132 Good Use of foods to remedy medical problems
6 008 Poor The ad for a postcard designed for students
6 009 Poor Details about Desktop Drive
6 018 Poor Cost for developing a web site
6 019 Poor The newsletter issue that discusses Internet attitudes and usage

Table 7.3: Site-speci�c information-seeking tasks (Health, Living, and Services).
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Id Age Gen Education CmpExp IExp IUse EngExp EvalExp

1 18-25 F College Grad. Average Average >10 Expert Average
2 18-25 M Some College Average Average 3-5 Average Average
3 18-25 F Some College Beginner Beginner 1-2 Average Beginner
4 18-25 M Some College Expert Expert >10 Expert Expert
5 18-25 F Some College Expert Expert >10 Expert Expert
6 18-25 M Some College Expert Expert >10 Expert Beginner
7 18-25 M Some College Average Average >10 Average Average
8 18-25 F Some College Expert Expert >10 Expert Expert
9 18-25 M Some College Average Average >10 Average Average
10 18-25 M Some College Average Expert >10 Expert Average
11 18-25 F Some College Average Average 1-2 Expert Beginner
12 18-25 F Some College Average Average 1-2 Expert Average
13 18-25 F �High School Average Average 6-10 Expert Average
14 18-25 M Some College Expert Expert >10 Expert Expert
15 18-25 F Some College Average Expert >10 Expert Average
16 26-35 M Some College Average Average 1-2 Expert Beginner
17 18-25 F Some College Average Average 3-5 Expert Average
18 18-25 F Some College Average Average >10 Expert Average
19 18-25 F Some College Average Average 6-10 Average Beginner
20 18-25 F �High School Average Average 1-2 Average Average
21 18-25 F Some College Average Average >10 Average Beginner
22 26-35 M Some College Average Expert >10 Expert Average
23 18-25 F Some College Average Average 3-5 Expert Beginner
24 18-25 F Some College Expert Expert >10 Expert Expert
25 18-25 F Some College Average Average 6-10 Average Beginner
26 36-45 F Some College Average Average 6-10 Expert Average
27 18-25 F Some College Average Average 6-10 Expert Expert
28 18-25 F Some College Average Expert >10 Average Average
29 18-25 M �High School Expert Expert 6-10 Expert Expert
30 18-25 F Some College Average Average 3-5 Average Beginner

Table 7.4: Summary of participants' demographic information. Participants provided their age and gender
(Gen) and described their pro�ciency with computers (CmpExp), the Internet (IExp), the English language
(EngExp), and evaluating Web site quality (EvalExp). Participants also reported the number of hours they
spend using the Internet weekly (IUse).

7.2.2 Participants

Study participants were recruited through undergraduate classes and sign-up sheets posted
in campus buildings. Thirty participants, primarily UC Berkeley undergraduates, completed the
study and were each compensated with $30. Participants answered demographic questions prior
to starting the study. Speci�cally, participants provided their age, gender, as well as information
about their education background, computer and Internet experience, the number of hours they use
the Internet weekly, English experience, and Web site evaluation experience. Table 7.4 summarizes
this information.

All but three of the participants were in the 18{25 age group, and all but four of the
participants were undergraduates. Two thirds of the participants were females. Only one partic-
ipant was a novice computer and Internet user; the remaining participants described themselves
primarily as average users. Half of the participants reported using the Internet for over ten hours
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a week. Half of the participants also reported having some experience evaluating the ease of use of
Web sites. Finally, all of the participants were experienced with the English language.

Based on the demographic information, all of the participants appear to have been appro-
priate for this study.

7.2.3 Testing Session

The study consisted of a 150-minute session wherein participants interacted with 22 sites;
the �rst two sites were for training. Participants were initially given an instruction sheet (see
Figure 7.2) that provided an overview of the study procedure. After reviewing the instruction
sheet, participants completed a statement of informed consent and moved to a computer station
for completing the study. The study interface requested demographic information and assigned each
participant to one of the 30 experiment designs. The interface subsequently guided participants
through two types of tasks as discussed below.

� Rate the site without completing information-seeking tasks. Participants were in-
structed to initially explore the site for several minutes. Then, participants were asked to
rate the site along a number of criteria and provide freeform comments about the site. This
task type assessed the perceived usability of a site.

� Rate the site after completing information-seeking tasks. Participants were in-
structed to initially explore the site for several minutes. Then, participants were presented
with three tasks and asked to locate the information as quickly as possible without using the
site's search engine. The testing interface presented tasks in a randomized order and provided
text �elds for participants to enter the information that they found; there were also radio but-
tons for participants to record their progress on each task (didn't try, tried, and completed).
The testing interface also recorded the total time spent on the three tasks. Finally, partici-
pants were asked to rate the site along a number of criteria and provide freeform comments
about the site. This task type assessed the actual usability of the site, since participants
attempted to use the site.

During the testing session, participants alternated between completing these two types
of tasks on the 22 sites. The testing interface timed participants during the exploration and
task completion phases. A message window appeared whenever participants spent more than �ve
minutes on either phase.

For the rating phase, participants responded to 20 statements from the WAMMI [Ki-
rakowski and Claridge 1998] questionnaire. WAMMI was the only validated usability scale for Web
sites at the time of this study. Responses to WAMMI statements were aggregated into six scales:
attractiveness, controllability, eÆciency, helpfulness, learnability, and global usability (see Section
7.5). Jurek Kirakowski, Director of the Human Factors Research Group in Ireland, converted partic-
ipant responses into WAMMI scales for this study. This conversion process also entails normalizing
computed scales against a database of other sites that have been assessed with the questionnaire.
The reported WAMMI scales are percentiles that reect how the site's rating contrast to other sites
that have been rated with the WAMMI questionnaire.

Participants were also asked about their con�dence in responses given to WAMMI state-
ments as well as their opinion about the appropriateness of tasks. Participants responded to all
statements using a 5-point Likert scale, ranging from strongly agree (1) to strongly disagree (5);
this order was required for consistency with the WAMMI questionnaire. Figure 7.3 depicts all of
the statements used during the rating phase. The testing interface presented WAMMI statements
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Web Site Usability Study Instructions

I. Overview of the Study
The purpose of this study is to get user feedback on the ease of use of a collection of web sites.
Basically, you will explore the site and provide responses to a number of statements about the
site's ease of use. There is no risk to you, and you will be compensated at a rate of $12/hour for
your participation.

Please read and sign the informed consent form and return to the tester.

II. Overview of the Study Procedure
General goal:
Rate web sites. There will be two kinds of tasks. (a) Find some information on the web site.
After you have completed all of the information-seeking tasks, then rate it. (b) Rate the web
site after only exploring it.

Tasks
(a) Rate web site after completing information-seeking tasks on it.
In the �rst part of the task, you will be asked to just explore the site. Look around and get
familiar with the content, layout, navigation, etc. of the site. Please do not spend more than
a few minutes on the site.
In the second part of the task, you will be required to complete some information-seeking tasks
on the site. Getting familiar with the site in the �rst part of the task will help you prepare for
this part. You are asked to locate the information as quickly as possible. We will time
you on the task; also try to respond as accurately as you can.
General instructions for the task

� Follow links, don't use search.

� Stay on the site. If by chance you choose a link that takes you out of the site, come back
and try to stay on the site.

� Do not spend more than a few minutes exploring the site; you will be reminded.

� The �rst task is for training.

(b) Rate web site without completing tasks on it.
You will go to a particular web site and explore it. Then rate the site. Do not spend more
than a few minutes exploring the site; you will be reminded. The �rst task is for
training.

Ratings:
Ratings are for 21 criteria on a scale. For each statement you will provide a response that reects
your agreement with the statement (Strongly Agree { Strongly Disagree). You can make any
general (free form) comments that you might have. Finally, please note your prior experience
with the site before this study.

Take breaks whenever you want to. If you need a break, try to take one in be-

tween two sites, rather than in the middle of completing tasks on a site. Re-

member not to spend too much time on one site; there are 22 sites in the study.

Figure 7.2: Instructions given to study participants.
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in a randomized order to increase the likelihood that participants actually read statements before
responding.

Both the computed WAMMI scales and the original responses to WAMMI statements were
analyzed. Likert scales for positive statements were inverted such that positive responses resulted
in higher scores (i.e., higher is better); this adjusts responses to statements 2, 3, 5, 6, 7, 8, 10,
11, 15, 17, 20, 21, and 22 as depicted in Figure 7.3. Overall, participants reported that they were
highly con�dent with their responses (statement 21) and felt that the tasks were useful (statement
22). Figure 7.4 depicts distributions of responses to these two statements.

Participants had the opportunity to provide freeform comments and to record the number
of times (never, 1{3 times, and 3 or more times) they had used a site prior to this study. In all
but three cases, participants had never used the sites in the study. Two participants reported
using a site more than three times, and another participant reported using a site 1{3 times. These
responses were eliminated from the analysis, since they were potentially biased based on prior
use. In addition to subjective ratings, the testing interface recorded timing information for the
exploration, task completion, and rating phases.

7.2.4 Testing Environment

Participants completed the study in one of seven group sessions in UC Berkeley's School
of Information Management and Science's second-oor computer lab. Participants worked individ-
ually at a computer station during these sessions. Computer stations had PCs running Microsoft
Windows NT 4.0 with 128 MB of RAM. Stations also had 17" monitors (1280 x 1024 pixels) and
high speed, campus Ethernet connections. Participants used the Netscape Navigator 4.7 browser.
The testing interface resized the browser window to 800 x 600 pixels (equivalent to a 15" monitor),
and sites were not cached in order to provide a realistic experience. User surveys have shown
that over 50% of Internet users access sites with 800 x 600 monitor resolution and 56K and slower
connection speeds [DreamInk 2000].

7.3 Data Collection

Several sites became unavailable during the course of this study, and in some cases par-
ticipants were unable to rate sites due to time constraints; responses were eliminated for these
situations. Responses were also eliminated for training sites and the three cases where partici-
pants had used sites prior to the study, since prior use may suggest a bias. Finally, one case was
eliminated wherein the participant did not attempt any tasks in the actual usability condition.

The �nal dataset consisted of 550 cases where each case included participant's responses
to the statements in Figure 7.3, computed WAMMI scales (attractiveness, controllability, eÆ-
ciency, helpfulness, learnability, and global usability), Webby scores (content, structure and navi-
gation, visual design, functionality, interactivity, and overall experience), and the Webby factor for
the site, participant's demographic information, objective measures (e.g., exploration and rating
time), and participant's comments. There were 271 cases for the actual usability condition (i.e.,
with information-seeking tasks) and 279 cases for the perceived usability condition (i.e., without
information-seeking tasks). Table 7.5 summarizes the distribution of cases. All of the sites were
rated in both the actual and perceived usability conditions. An average of �ve participants rated
each site in the two conditions; thus, a site was rated by an average of ten participants overall.

Each of the 550 cases contained 66 �elds of information as described below.



189

Rating Criteria

1. This web site has some annoying features. (-, annoy)

2. I feel in control when I'm using this web site. (+, control)

3. Using this web site for the �rst time is easy. (+, easy)

4. This web site is too slow. (-, slow)

5. This web site helps me �nd what I am looking for. (+, �nd)

6. Everything on this web site is easy to understand. (+, clear)

7. The pages on this web site are very attractive. (+, pretty)

8. This web site seems logical to me. (+, logical)

9. It is diÆcult to tell if this web site has what I want. (-, no�nd)

10. This web site has much that is of interest to me. (+, interest)

11. I can quickly �nd what I want on this web site. (+, q�nd)

12. It is diÆcult to move around this web site. (-, nonav)

13. Remembering where I am on this web site is diÆcult. (-, noremind)

14. Using this web site is a waste of time. (-, waste)

15. I can easily contact the people I want to on this web site. (+, contact)

16. I don't like using this web site. (-, nolike)

17. I get what I expect when I click on things on this web site. (+, expect)

18. This web site needs more introductory explanations. (-, nointros)

19. Learning to �nd my way around this web site is a problem. (-, nolearn)

20. I feel eÆcient when I'm using this web site. (+, eÆc)

21. I feel very con�dent about my responses to the previous statements regarding this web
site. (+, conf)

22. These tasks enabled me to get an overview of the site. (+, taskuse, for information-seeking
tasks only)

Figure 7.3: Rating criteria used during the study. The �rst 20 statements are from the WAMMI question-
naire. Statements are noted as positive (+) or negative (-) and a short descriptor is provided for each.
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Figure 7.4: Study participants' con�dence with responses to WAMMI statements (top graph) and reported
usefulness of tasks in the actual usability condition (bottom graph). Responses range from low (1) to high
(5).
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Category Good Poor Total

Actual Usability
Community 25 25 50
Education 23 22 45
Finance 22 24 46
Health 24 25 49
Living 18 24 42
Services 20 19 39
Total 132 139 271

Perceived Usability
Community 23 25 48
Education 25 25 50
Finance 24 25 49
Health 25 24 49
Living 19 25 44
Services 19 20 39
Total 135 144 279

Table 7.5: Number of cases (ratings) in the analyzed sample.

7.3.1 Basic Information

Site Identi�cation: the site's category (Community, Education, Finance, Health, Living, or Ser-
vices), URL, title, id, and whether the site belonged to the top or bottom 33% of reviewed
sites (i.e., good or poor class).

Study Condition: participant id and experiment condition (actual or perceived usability).

Participant Demographics: participant's age, gender, educational background, computer experi-
ence, Internet experience, weekly Internet use, English experience, and Web site evaluation
experience. Table 7.4 summarizes this information.

7.3.2 Objective Measures

Timing: site exploration time (exptime), time spent completing tasks in the actual usability con-
dition (tasktime), and time spent rating the site in both conditions (ratetime). Total time
spent on the site (exp+task) was also computed for analysis; this time is the same as site
exploration time in the perceived usability condition.

Task Completion: whether the participant did not attempt to complete, attempted to complete, or
completed each of the three tasks (t1suc, t2suc, and t3suc). The number of tasks that were
not attempted (notry), not completed (nocomp), and completed (comp) were also tallied.

7.3.3 Subjective Measures

Responses to WAMMI Statements: subjective measures included the participant's responses to state-
ments 1 through 20 of Figure 7.3 { annoy, control, easy, slow, �nd, clear, pretty, logical, no�nd,
interest, q�nd, nonav, noremind, waste, contact, nolike, expect, nointros, nolearn, and eÆc {
respectively. Positive statements were inverted as previously discussed.
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Computed WAMMI Scales: attractiveness (wamattr), controllability (wamcon), eÆciency (wame�),
helpfulness (wamhelp), learnability (wamlearn), and global usability
(wamglob).

Composite WAMMI Score: There was an attempt to compute a composite WAMMI score similarly
to the computed Webby factor. However, there was little correlation among the six WAMMI
scales. Although, there were large positive correlations between global usability and attrac-
tiveness, controllability, helpfulness, and learnability, there was a small negative correlation
with eÆciency. Hence, it was not possible to compute a single factor that could explain most
of the variance in these scales. Instead, responses to the 20 statements were summed to
represent a composite score (wamsum). Section 7.4 discusses this in more detail.

Webby Scores: content (content), structure and navigation (nav), visual design (vis), functionality
(funct), interactivity (int), and overall experience (overall).

Composite Webby Score: the computed Webby factor (webbyfac); this measure was derived via
principal components analysis over the six Webby scores.

Other Measures: con�dence with responses to WAMMI statements (conf), usefulness of tasks in
the actual usability condition (taskuse), and the number of times the participant had used
the site prior to the study (prioruse).

Task Responses: answers and comments provided for each of the three information-seeking tasks
(t1resp, t2resp, and t3resp) in the actual usability condition.

Comments: freeform comments on the site's ease of use.

7.3.4 Screening of Objective and Subjective Measures

The data was screened to replace extremely large and small outliers with the next smallest
or largest values as appropriate for each of the objective and subjective measures; this is a standard
statistical process used to remove potential errors in measurement from analysis data [Easton and
McColl 1997; SPSS Inc. 1999]. Tests for normality and equal variances revealed that most of
these measures did not follow a normal distribution, although most exhibited equal variances.
Standard statistical analysis techniques assume these two conditions; hence, it was not possible
to use parametric techniques with this dataset. Applying transformations to stabilize the data,
such as square roots and reciprocals of square roots, were unsuccessful. Nonparametric analysis
techniques were used during analysis, since they do not require data to satisfy the normality and
equal variances conditions.

7.4 Developing a Composite WAMMI Score

When participants respond to multiple questions to provide subjective ratings, it is a
common practice to summarize these responses with one factor. For example, the Questionnaire
for User Interaction Satisfaction (QUIS) [Harper and Norman 1993] requires participants to rate
an interface on 27 facets, the responses can then be summed to produce an overall measure of user
satisfaction; it is also possible to aggregate subsets of responses into several interface factors, in-
cluding system feedback and learning. For the second metrics study, principal components analysis
was used to produce a composite Webby score { the Webby factor; this factor summarized judges'
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Scale wamattr wamcon wame� wamhelp wamlearn wamglob

wamattr 1.00 0.17 -0.03 0.16 0.11 0.49
wamcon 0.17 1.00 -0.35 0.45 0.17 0.55
wame� -0.03 -0.35 1.00 -0.41 -0.18 -0.07
wamhelp 0.16 0.45 -0.41 1.00 0.11 0.64
wamlearn 0.11 0.17 -0.18 0.11 1.00 0.52
wamglob 0.49 0.55 -0.07 0.64 0.52 1.00

Table 7.6: Correlations between the 6 WAMMI scales. Bold entries are signi�cant.

ratings for the six criteria and made it possible to produce more accurate predictions than with the
overall experience score [Ivory et al. 2001].

Similarly to the Webby factor, there was an attempt to compute a composite WAMMI fac-
tor based on the six scales. Table 7.6 shows correlations between pairs of WAMMI scales; Spearman
correlation coeÆcients were computed, since this method is appropriate for nonparametric data.
With the exception of the global usability scale (wamglob), there was only small to medium corre-
lations between scales; correlations were surprisingly negative in some cases. The global usability
scale had large positive correlations with all of the scales, except eÆciency (wame�). Inconsistency
among the scales is somewhat expected, since there were only �ve or fewer responses for each site
in each of the two conditions. According to the developers of the WAMMI scales, scales typically
require 20 or more responses to stabilize3. Given the instability of the scales, it was not possible to
construct a single factor to summarize them. Several factor analysis approaches were used, such as
principal components and maximum likelihood with and without rotation; this analysis could only
produce two factors that explained 63% of the total variance in the scales.

A composite score was computed by summing responses to the 20 statements; this com-
posite score, wamsum, ranges from 20 to 100 and naturally correlates with all of the statements.
Figure 7.5 shows that most of the sums were towards the middle of the range.

7.5 Mapping Between WAMMI Scales and Webby Scores

As discussed in Section 7.3.1, subjective measures included the computed WAMMI scales
(attractiveness, controllability, eÆciency, helpfulness, learnability, and global usability) and the
Webby scores (content, structure and navigation, visual design, functionality, interactivity, and
overall experience). Kirakowski and Claridge [1998] claim that WAMMI scales were developed and
validated through empirical studies, as is typically done with psychological scales. Although not
veri�ed, the Webby scores were developed based on consensus of the members of the International
Academy of Digital Arts & Sciences. It is not clear how the academy members derived the scores
or what instructions were given to judges to facilitate ratings.

Based solely on the descriptions of Webby scores and WAMMI scales, there appeared to
be direct mappings between �ve criteria in the two rating schemes as depicted in Table 7.7. The
learnability and interactivity criteria did not appear to be closely related. There are several key
di�erences between the two ratings schemes:

� Webby scores are average ratings (typically for three judges), while WAMMI scales are com-
puted from responses to individual statements and normalized against other assessed sites.

3Personal communication with Jurek Kirakowsi on December 2, 2000.
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Figure 7.5: Wamsum scores (sums of responses to the 20 WAMMI statements) for the analyzed sample.

WAMMI Scales Webby Scores

Helpfulness { \corresponds with the users' Content { \the information provided
expectations about its content and structure..." on the site..."

Controllability { \the users most probably Structure and Navigation { \the
feel they can navigate around it with ease..." organization of information on the site

and the method in which you move
through sections..."

Attractiveness { \An attractive site is Visual Design { \appearance of the
visually pleasant..." site..."

EÆciency { user \can quickly locate what Functionality { \the site loads quickly,
is of interest to them and they feel that the has live links, and any new technology
web site responds..." used is functional and relevant..."

Global Usability { \a site must make it Overall Experience { \encompasses
easy for users to access what they need content, structure and navigation,
or want..." visual design, functionality, and

interactivity, but it also encompasses the
intangibles that make one stay or leave..."

Learnability { \users feel they are able to {
start using the site with the minimum of
introductions..."

{ Interactivity { \the way that a site allows
a user to do something..."

Table 7.7: Description of the WAMMI usability scales and Webby scores in conjunction with mappings
between these two rating schemes. Mappings are based solely on descriptions.
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Criterion Min. Max. Mean Std. Dev. Med.

Webby Scores
content 1.3 10.0 6.4 2.5 7.0
nav 1.3 9.3 6.1 2.3 6.7
vis 1.3 9.0 5.5 2.1 6.0
funct 1.0 10.0 5.6 2.5 6.0
int 1.3 9.5 6.4 2.2 7.3
overall 1.0 10.0 5.9 2.5 5.3

WAMMI Scales
wamattr 5.0 62.0 26.2 12.1 25.0
wamcon 2.0 65.0 15.8 14.5 11.0
wame� 4.0 61.0 29.6 13.1 27.0
wamhelp 2.0 83.0 27.8 20.9 19.0
wamlearn 4.0 71.0 28.8 15.4 24.5
wamglob 11.0 50.0 25.3 7.5 24.0

Table 7.8: Descriptive statistics for Webby scores and WAMMI scales.

Score content nav vis funct int overall

content 1.00 0.91 0.83 0.90 0.90 0.96
nav 0.91 1.00 0.90 0.90 0.93 0.93
vis 0.83 0.90 1.00 0.84 0.89 0.87
funct 0.90 0.90 0.84 1.00 0.93 0.91
int 0.90 0.93 0.89 0.93 1.00 0.93
overall 0.96 0.93 0.87 0.91 0.93 1.00

Table 7.9: Correlations between the six Webby scores. All of the entries are signi�cant.

WAMMI scales are actually percentiles (e.g., a scale value of 70 means that the site scored
better than 70% of Web sites and worse than 30% of sites).

� Webby scores range from 1 to 10, while WAMMI scales range from 1 to 100 (see Table 7.8);
and

� All of the Webby scores are strongly correlated with each other (see Spearman correlation
coeÆcients in Table 7.9), while WAMMI scales are not (see Table 7.6).

Despite di�erences between these rating schemes, they were used to directly compare
judges' and participants' ratings for sites. To facilitate comparison, the WAMMI scales and Webby
scores were transformed into Z scores (see Table 7.10). Each Z score is a standard deviation unit
that indicates the relative position of each value within the distribution (i.e., Zi =

xi��x
�

, where
xi is the original value, �x is the mean, and � is the standard deviation). Ideally, one would start
from non-normalized WAMMI scales and then compute the Z scores, but according to the WAMMI
scale developers, there is no notion of non-normalized WAMMI scales. Composite WAMMI scores
(wamsum) were also transformed into Z scores to compare these measures to the computed Webby
factors (webbyfac). (Webby factors were already expressed as Z scores.) Z scores for the composite
WAMMI scores were highly correlated with the non-normalized scales; the correlations were also
signi�cant.
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Criterion Min. Max. Med.

Webby Scores
content -2.1 1.5 0.2
nav -2.1 1.4 0.2
vis -2.0 1.6 0.2
funct -1.8 1.5 0.1
int -2.3 1.4 0.4
overall -1.8 1.4 -0.2

WAMMI Scales
wamattr -1.8 3.0 -0.1
wamcon -1.0 3.4 -0.3
wame� -1.9 2.4 -0.2
wamhelp -1.2 2.6 -0.4
wamlearn -1.6 2.8 -0.3
wamglob -1.9 3.3 -0.2

Table 7.10: Descriptive statistics for the Webby scores and WAMMI scales (Z scores). The means and
standard deviations for each measure are zero and one, respectively.

Mean Std. Dev.
Measure Good Poor Good Poor

exptime 148.5 111.9 93.8 83.1
ratetime 88.5 88.3 34.8 31.7

Table 7.11: Objective measures of perceived usability for good and poor sites. Bold entries represent
signi�cant di�erences in means.

7.6 Perceived Usability Results

The following sections summarize the relationship between participants' subjective and
objective data for good and poor sites as well as the consistency between perceived usability ratings
and Webby scores.

7.6.1 Perceived Usability of Good and Poor Sites (Objective and Subjective
Measures)

Objective measures were analyzed to compare participants' usage of good and poor sites;
how these usage patterns correlated with subjective ratings was then studied. Site exploration
(exptime) and rating (ratetime) times were the only objective measures in the perceived usability
condition. Table 7.11 reports results of comparing these times for sites in the good and poor category
using the Mann-Whitney test. (The Mann-Whitney test [SPSS Inc. 1999] is a nonparametric
alternative to t-tests for the equality of means, which is typically used for normally-distributed
samples; it is related to the Wilcoxon test.) Participants explored good and poor sites for 149 and
112 seconds on average, respectively. Test results showed this di�erence to be signi�cant (two-tailed
p value less than 0.05); there was no signi�cant di�erence for rating time.

The di�erence in exploration time suggests that participants spent more time exploring
good sites, possibly because they were more usable or interesting. Sinha et al. [2001] conducted
an empirical analysis of Webby scores for the 2000 Webby Awards dataset, which includes sites in
this study; the authors found content to be the best predictor of Web site quality. This �nding
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provides some support for the hypothesis that participants may have considered good sites to be
more interesting.

To test the hypothesis that participants may have considered good sites to be more usable,
composite WAMMI scores (wamsum) for good and poor sites were compared. Speci�cally, the goal
was to determine if participants rated good sites lower than poor sites, since they had spent more
time on them; this result would have contradicted the hypothesis stated above. Mann-Whitney
tests computed over composite ratings for good and poor sites revealed that good sites were rated
higher (mean of 75.6 vs. 68.3); this di�erence was signi�cant.

There were mixed results for the six WAMMI scales, most likely due to their instability;
hence, results are not reported for them in this section.

7.6.2 Consistency of Perceived Usability Ratings and Webby Scores (Subjective
Measures)

The previous section showed that good sites were rated more favorably on average, thus
providing some evidence that there may be some consistency between judges' and participants'
ratings of sites. This section explores rating consistency further by comparing mean ratings for the
�ve Webby scores and WAMMI scales that appeared to be directly related based on their descrip-
tions. Speci�cally, the analysis compares: Webby content (content) to WAMMI help (wamhelp);
Webby structure and navigation (nav) to WAMMI controllability (wamcon); Webby visual design
(vis) to WAMMI attractiveness (wamattr); Webby functionality to WAMMI eÆciency (wame�);
and Webby overall (overall) to WAMMI global usability (wamglob). The analysis also compares
the Webby factor (webbyfac) to the composite WAMMI score (wamsum).

For this comparison, the WAMMI scales and Webby scores were transformed into Z scores
as discussed in Section 7.5. Wilcoxon Signed Ranks tests [SPSS Inc. 1999] were then conducted
on the Z scores to study mean di�erences between site ratings in the two schemes. (The Wilcoxon
Signed Ranks test is equivalent to the paired t-test for related variables in normally-distributed
samples.) If the Wilcoxon Signed Ranks test reports that a pair of ratings is signi�cantly di�erent,
then the ratings are not consistent and vice versa. There was no di�erence between composite
ratings { Webby factor and sum of responses to WAMMI statements; thus, perceived usability
ratings were mostly consistent with judges' scores.

Judges' scores were also consistent with usability ratings for the individual scores, except
for structure and navigation and controllability. The di�erence between the navigation and con-
trollability measures may be due to incompatibility. Recall that mappings between Webby scores
and WAMMI scales were determined strictly based on their descriptions (see Section 7.5). These
two measures may actually be assessing di�erent aspects. Furthermore, the controllability scale
may be unstable due to the small number of responses per site.

7.7 Actual Usability Results

The following sections summarize the relationship between participants' subjective and
objective data for good and poor sites as well as the consistency between usability ratings based
on actual site usage and Webby scores.
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Mean Std. Dev.
Measure Good Poor Good Poor

exptime 153.4 122.7 96.1 90.5
tasktime 196.8 157.8 92.6 85.8
ratetime 89.0 92.7 30.6 33.9
t1suc 2.8 2.9 0.5 0.4
t2suc 2.8 2.9 0.5 0.4
t3suc 2.4 2.6 0.6 0.5
notry 0.2 0.1 0.5 0.2
nocomp 0.7 0.6 0.7 0.8
comp 2.1 2.3 0.9 0.9

Table 7.12: Objective measures of actual usability for good and poor sites. Bold entries represent signi�cant
di�erences in means.

7.7.1 Actual Usability of Good and Poor Sites (Objective and Subjective Mea-
sures)

Objective measures were analyzed to compare participants' actual usage of good and poor
sites to complete information-seeking tasks; how these usage patterns correlated with subjective
ratings was then studied. Objective measures in the actual usability condition include: site ex-
ploration time (exptime), task completion time (tasktime), rating time (ratetime), whether the
participant did not attempt, attempted, or completed each of the three tasks (t1suc, t2suc, and
t3suc), the number of tasks the participant did not attempt (notry), the number of tasks the
participant did not complete (nocomp), and the number of completed tasks (comp).

Mann-Whitney tests on the perceived usability data showed that participants spent more
time exploring good sites, possibly because they were more usable or interesting. Mann-Whitney
tests on the actual usability data (see Table 7.12) revealed that exploration time (exptime), task
completion time (tasktime), successful completion of the site-speci�c task (t3suc), the number of
tasks not attempted (notry), and the number of tasks completed (comp) were all signi�cantly
di�erent between good and poor sites in the full sample. Considering these measures in tandem
suggests an interesting pattern { participants spent more time on good sites, but completed fewer
tasks than they did on poor sites. The following signi�cant di�erences supported this pattern:

� participants spent 151 seconds on average exploring good sites versus 125 seconds on poor
sites;

� participants spent 198 seconds on average completing tasks on good sites versus 159 seconds
on poor sites;

� t3suc measures (2.36 vs. 2.55) indicate that participants completed fewer site-speci�c tasks
on good sites; and

� notry measures (0.18 vs. 0.05) indicate that a larger proportion of tasks (general and site-
speci�c) were not even attempted on good sites.

� comp measures (2.1 vs. 2.3) indicate that fewer tasks (general and site-speci�c) were completed
on good sites.

Based on this pattern, one may naturally expect that participants rated good sites lower
than poor sites. However, this was not the case. Good sites had a mean wamsum score of 72.1
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vs. 68.2 for poor sites, but this di�erence was not signi�cant. There were mixed results for the six
WAMMI scales, most likely due to their instability; hence, results are not reported for them in this
section.

7.7.2 Consistency of Actual Usability Ratings and Webby Scores (Subjective
Measures)

The previous section showed that good sites were rated slightly more favorably on average,
although the di�erence was not signi�cant. Results suggest that there may be some consistency
between judges' and participants' ratings. To explore rating consistency further, the same com-
parison of WAMMI and Webby ratings was replicated (see Section 7.6.2). Overall, judges' scores
were mostly consistent with participants' ratings. The Webby factor and composite WAMMI score
were consistent as well as all other individual Webby scores, except for functionality and eÆciency.
There was a signi�cant di�erence between the Webby functionality and the WAMMI eÆciency
measures, possibly due to the instability of the WAMMI scale.

7.8 Summary

This chapter presented results from a usability study of 57 Web sites wherein 30 partic-
ipants rated sites in two conditions: after simply exploring sites (perceived usability); and after
completing information-seeking tasks on sites (actual usability). The full data collection consisted
of 550 cases. The analysis focused on answering the following questions.

� Are judges' scores consistent with perceived usability ratings?

� Are judges' scores consistent with actual usability ratings?

Analysis of objective and subjective data provided evidence that judges' scores are mostly
consistent with both actual and perceived usability ratings. This suggests that pro�les developed in
Chapter 6 reect usability to some degree. However, concrete conclusions about pro�les reecting
usability cannot be drawn from this study due to the time di�erence between the judges' and
users' evaluations. A follow up study needs to be conducted wherein non experts and experts rate
identical sites. A better alternative is to develop the pro�les from usability ratings in the �rst place;
thus, eliminating the need for such a study. Unfortunately, the Webby Awards dataset was/is (at
this time) the only large corpus of sites rated along dimensions that appear to be somewhat related
to usability.
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Chapter 8

Applying the Web Interface Pro�les:

Example Web Site Assessment

8.1 Introduction

This chapter describes the use of the pro�les developed in Chapter 6 to assess and improve
the quality of an example Web site. The intent of this chapter is three-fold: 1. to demonstrate
how the models can be systematically applied to this problem; 2. to illustrate the type of design
changes informed by the models and how they vary across models; and 3. to highlight current
limitations of the models. The example assessment closely follows the evaluation scenario depicted
in Chapter 4, which is the overarching goal of the work in this dissertation. Currently, interpreting
model predictions and determining appropriate design changes is a manual process; future work
will focus on automating recommendations for improving designs as well as implementing these
recommendations. Identifying comparable good designs to aide in site improvements will also be
incorporated in future work.

8.2 The Example Site

Figures 8.1{8.3 show three pages taken from a small (nine page) site in the Yahoo Educa-
tion/Health category. The site provides information about training programs o�ered to educators,
parents, and children on numerous health issues, including leukemia and cerebral palsy. The site,
which was not included in the pro�le development sample (see Chapter 6), was selected because
on �rst glance it appears to have good features, such as clear and sharp images and a consistent
page layout, but on further inspection it seemed to have problems. The site assessment focused on
answering the following questions.

� Is this a high-quality site? Why or why not?

� Are these high-quality pages? Why or why not?

� What can be done to improve the quality of this site?

The �rst step was to download a representative set of pages from the site. For this
particular site, only eight level-one pages were accessible, and no level-two pages were reachable,
for a total of 9 downloaded pages. Although there is a page containing links (Figure 8.2), the links
are to pages external to the site.
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Figure 8.1: Home
page taken from the example health education site (http://www.hallofhealth.org/home.html; September
14, 2001).
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Figure 8.2: Link
page taken from the example health education site (http://www.hallofhealth.org/weblinks.html; Septem-
ber 14, 2001).
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Figure 8.3: Con-
tent page taken from the example health education site (http://www.hallofhealth.org/puppetshows.html;
September 14, 2001).
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The next step was to use the Analysis Tool (see Chapter 4) to compute site-level and
page-level measures and to apply the models to individual pages and to the site as a whole. Each
model encapsulates relationships between key predictor measures and can be used to (i) generate
quality predictions and (ii) determine how pages and sites are consistent with or deviate from good
pages and sites.

In the discussions below, when decision tree rules are used to generate predictions, the
consequences are interpreted manually. When cluster models are applied, the score for each measure
on an individual page is compared to that of the cluster centroid, and if the measure di�ers by more
than one standard deviation unit from the centroid, the measure is reported as being inconsistent
with the cluster. Cluster deviations are also interpreted manually.

8.3 Site-Level Assessment

The example site can be classi�ed in both the health and education content categories,
so the site-level decision tree model was run initially without di�erentiating by content category.
The site-level model predicted that the site is similar to poor sites overall; the median page quality
prediction (i.e., median computed over the overall page quality model's predictions for the nine
pages; poor) is consistent with the overall site quality model's prediction. The corresponding
decision tree rule (top of Figure 8.4) reveals that the site has an unacceptable amount of variation in
link elements (31%), although variation for other site-level measures is acceptable. The combination
of the link element variation and the lack of a comparable overall element variation violates patterns
discovered on good sites.

The major source of link element variation is the text link count. Eight out of nine pages
have from two to four text links; the remaining page has 27 text links, and acts as a links page (see
Figure 8.2). The decision tree rule suggests that a link element variation level below 29% is typical
on good sites. One interpretation of this �nding is that good sites strive to keep the navigation
structure consistent among pages and may even distribute links over multiple pages to maintain
this consistency. Hence, the rule may indicate the need to similarly redistribute the links on this
page.

Site quality was also assessed according to the two applicable content categories { health
and education. The decision tree for health sites predicted that this is a poor health site (middle of
Figure 8.4). In this case the problem is inadequate text element variation. Most of the pages on the
site contain paragraphs of text without headings and use only one font face (serif); this may actually
make it harder for users to scan the page to �nd the information they are looking for [Nielsen 2000;
Spool et al. 1999]. The median health page quality prediction (poor) is consistent with the health
site prediction.

The decision tree for education sites made a prediction contrary to that for sites overall
and health sites; it found this site to be consistent with good education sites (bottom of Figure 8.4).
Good health and good education sites are similar with respect to graphic formatting variation, but
are quite di�erent on the other measures, which is the cause for this disparity. However, as will be
discussed below, the median education page quality is poor.

8.4 Page-Level Assessment

The decision tree model for predicting page quality reports that all nine of the pages are
consistent with poor pages. The home page (Figure 8.1) contains seventeen italicized body words;
pages with more than two italicized body words are considered poor pages in the model (see rule
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Overall Site Quality

if ((Page Performance Variation is missing OR (Page Performance Variation � 90.2)) AND
(Overall Variation is not missing AND (Overall Variation � 14.49)) AND (Link Element
Variation is missing OR (Link Element Variation > 29.195)) AND (Overall Element Varia-
tion is missing OR (Overall Element Variation � 26.07)))

Class = Poor

This rule classi�es the site as poor because the pages have acceptable page performance,

overall, and overall element variation, but they have more than 29.2% variation in link

elements (30.68%).

Health Site Quality

if ((Graphic Element Variation is not missing AND (Graphic Element Variation � 32.695))
AND (Text Element Variation is missing OR (Text Element Variation > 47.45)) AND (Text
Element Variation is missing OR (Text Element Variation � 92.25)))

Class = Poor

This rule classi�es the site as poor because the pages have acceptable graphic element

variation, but they have between 47.45% and 92.25% variation in text elements (53.18%).

Education Site Quality

if ((Median Page Breadth is missing OR (Median Page Breadth � 11.25)) AND (Page Title
Variation is missing OR (Page Title Variation � 196.7)) AND (Page Formatting Variation
is missing OR (Page Formatting Variation � 27.785)) AND (Page Title Variation is missing
OR (Page Title Variation � 132.495)) AND (Graphic Formatting Variation is not missing
AND (Graphic Formatting Variation � 16.165)))

Class = Good

This rule classi�es the site as good due to an acceptable combination of measures: the

median page breadth (8) is less than twelve; and pages in the site have very little similarity

in page titles (37.5%), page formatting variation (0%), and graphic formatting variation

(3.19%).

Figure 8.4: Decision tree rules reported for the example health education site. The rules were reported by
the overall (top), health (middle), and education (bottom) site quality models.
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Home Page

if ((Italicized Body Word Count is not missing AND (Italicized Body Word Count > 2.5)))

Class = Poor

This rule classi�es the home page as poor because it contains more than two italicized words

(17) in the body text.

Link and Content Page

if ((Italicized Body Word Count is missing OR (Italicized Body Word Count � 2.5)) AND
(Minimum Font Size is not missing AND (Minimum Font Size > 9.5)) AND (Minimum
Graphic Height is missing OR (Minimum Graphic Height � 36)) AND (Minimum Color
Use is not missing AND (Minimum Color Use > 15.5)))

Class = Poor

This rule classi�es both the link and content pages as poor because they contain an ac-

ceptable number of italicized words in the body text and contain at least one image with

a height less 37 pixels, but all of the text is formatted with a font greater than 9pt and all

of the colors are used more than �fteen times. Recall that good pages tend to use a font

smaller than 9pt typically for copyright text, and they use an accent color (see Section 6.6).

Figure 8.5: Decision tree rules reported for the three example pages. These rules were reported by the
overall page quality model.

at the top of Figure 8.5). Schriver [1997] suggests that italicized text should be avoided because it
is harder to read on computer screens than in printed documents.

Recall from Section 5.10.1 that a minimum color count metric was developed to track the
number of times each color is used on a page and to report the minimum number of times a color
is used; this measure detects the use of an accent or sparsely-used color. The content page (Figure
8.3) is classi�ed as poor mainly because the minimum number of times a color is used is sixteen
and all of the text, including the copyright text at the bottom of the page, is formatted with a font
greater than 9pt (bottom of Figure 8.5). Good pages tend to have an accent color that they use
sparingly, whereas poor pages seem to overuse accent colors (see Section 6.6). Good pages also tend
to use a smaller font size for copyright or footer text unlike poor pages. Additionally, the example
content page contains 34 colored body text words, which is twice the average number found on
good pages; in the extreme case, a large number of colored words could result in the uncolored
words standing out more so than the colored words. The same prediction and decision tree rule is
reported for the link page.

To gain more insight about ways to improve page quality, each page was mapped into
one of the three clusters of good pages { small-page, large-page, and formatted-page. All of the
pages map into the small-page cluster and are far from the cluster centroid (median distance of
10.9 standard deviation units); the page closest to the center of this cluster has a distance of 4.0
standard deviation units (see Section 6.7). Pages in the example site deviate on key measures that
distinguish pages in this cluster, including the graphic ad, text link, link text cluster, interactive
object, and link word counts. Table 8.1 summarizes, for the sample content page, the ten key
measures (i.e., measures that play a major role in distinguishing pages in this cluster) that deviate
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Measure Value Cluster Range

Vertical Scrolls 2.0 (0.56{2.00)
Text Column Count 5.0 (0.62{4.36)
All Page Text Terms 129.0 (138.59{353.24)
Link Count 12.0 (12.40{41.24)
Text Link Count 2.0 (4.97{27.98)
Good Link Word Count 3.0 (7.43{49.67)
Bobby Browser Errors 6.0 (7.54{14.99)
Font Count 6.0 (3.64{5.80)
Sans Serif Word Count 0.0 (13.91{253.57)
Display Word Count 33.0 (1.13{18.67)

Table 8.1: Top ten measures that deviate from the small-page cluster for the example content page. The
measures are presented in their order of importance. Each range reects one standard deviation unit around
the metric value at the cluster centroid. The page's measures are 8.33 standard deviation units from the
cluster centroid.

from the cluster centroid; deviations are similar for other pages in the site. Most of these deviations,
including two of the top ten measures (text link count and good link word count), can be attributed
to the fact that the site provides predominately graphical links instead of text links for navigation.
Table 8.1 also shows deviation on the page height (vertical scrolls), the use of words formatted with
sans serif fonts (san serif word count), and the overall use of fonts (font count { combinations of a
font face, size, bolding, and italics).

The quality of these pages was also evaluated using the more context-sensitive page quality
models for health and education pages (as opposed to the overall model). All but two of the pages
were predicted to be poor health pages, which mirrors the results of the site-level model. However,
all of the pages were also predicted to be poor education pages, contrasting with the site-level model.
In both cases, predictions were based on the features mentioned above. Table 8.2 summarizes the
top ten measures that deviate from the two models and shows that there is some similarity between
the two sets of measures, especially for measures related to text links (text link, link word, and
good link word counts).

The contrast between site-level and page-level predictions demonstrate the need to in-
corporate page-level predictions into the site-level prediction. For example, a site can only be
considered a good site if the site-level measures are consistent with good sites AND most of the
pages are consistent with good pages. At the site level, the example site was highly consistent on
page formatting, graphic formatting, and page performance; however, the page quality predictions
show that several design aspects, such as text formatting and link elements, need to be improved.
If the site-level model for education sites incorporated page-level measures, then this site would be
considered a poor education site. Considering the median page quality predictions in conjunction
with site quality predictions is one way to mitigate this limitation.

Finally, the quality of these pages was evaluated using the models for each page type {
home, link, content, form, and other. The page type decision tree made accurate predictions for
six of the nine pages, but inaccurately predicted that three pages were consistent with link pages;
visual inspection suggested that these pages were actually content pages. As shown in Figure
8.6, the mispredictions were mainly due to an improper balance of link, body, and display text
stemming from an overuse of image links. After correcting the page type predictions, all nine of
the pages were classi�ed as poor pages. Table 8.3 summarizes the top ten measures that deviate on
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Health Page Quality Education Page Quality
Measure Value Model Range Measure Value Model Range

Weblint Errors 0.0 (6.06{82.82) Bobby Priority 2 3.0 (3.09{5.41)
Errors

Internal Link 10.0 (16.16{69.36) Bobby Browser 6.0 (9.08{20.28)
Count Errors
Bobby Browser 6.0 (6.63{22.49) Minimum Font 10.0 (8.88{9.10)
Errors Size
Link Count 12.0 (18.81{76.87) Minimum Color 16.0 (0.20{6.22)

Use
Redundant Link 1.0 (1.30{19.62) Fixed Page Width 0.0 (0.42{1.20)
Count Use
Graphic Pixels 224.1K (80.6K{214.8K) Minimum Graphic 32.0 (0.00{21.45)

Height
Text Link Count 2.0 (3.41{53.91) Text Positioning 14.0 (0.00{4.44)

Count
Good Link Word 3.0 (6.23{98.25) Text Link Count 2.0 (5.69{43.07)
Count
Link Word Count 4.0 (6.58{136.78) Link Word Count 4.0 (7.66{112.22)
Text Positioning 14.0 (1.03{7.11) Good Link Word 3.0 (6.10{81.16)
Count Count

Table 8.2: Top ten measures that deviate from the health and education page quality models for the example
content page. The measures are presented in their order of importance. Each range reects one standard
deviation unit around the mean in the model.
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if ((All Page Text Score is missing OR (All Page Text Score > 10.5)) AND (Good Body
Word Count is not missing AND (Good Body Word Count � 86.5)) AND (Link Word
Count is missing OR (Link Word Count � 73)) AND (Interactive Object Count is missing
OR (Interactive Object Count � 2.5)) AND (Good Body Word Count is missing OR (Good
Body Word Count > 22.5)) AND (Good Text Color Combination is missing OR (Good Text
Color Combination � 5.5)) AND (Good Display Word Count is not missing AND (Good
Display Word Count � 0.5)) AND (Graphic Bytes is missing OR (Graphic Bytes > 38540)))

PageType = Link

This rule classi�es a page as a link page because it has some similarity in content with

the source page and contains few interactive objects and good text color combinations, but

it also contains few link, good body, and good display (heading) words and more than

38 Kbytes for images. In other words, the page is dominated by images, image links in

particular, and has inadequate text and text links.

Figure 8.6: Decision tree rule that mispredicts content pages to be link pages. This rule was returned for
pages other than the three discussed in this section.

the sample content page. This model reports several deviations that were also reported by other
models, including the minimum font size, minimum color use, sans serif word count, and text link
count.

8.5 Summary of Assessment Findings

Tables 8.4 and 8.5 summarize the measures reported as being inconsistent for the individ-
ual pages and the site overall. Most of these measures were discussed above; however, some of the
page-level measures were reported for pages other than the three example pages. Several page-level
measures were reported as being inconsistent by over half of the models, including the link word
and good link word counts, text link count, minimum font size, minimum color use, and Bobby
browser errors. In addition, the text and link element variation measures were reported as being
inconsistent at the site level.

The models provide some direct insight for resolving design issues associated with some of
the measures. For example, decision tree rules reported by the overall page quality model indicate
inconsistent measures with a > in the threshold (e.g., italicized body word count > 2.5); they also
indicate consistent measures with a < in the threshold. In these cases, the designer could explore
ways to reduce measure values below reported thresholds, such as removing italics or text coloring,
changing font sizes, breaking text into multiple column, etc. The same guidance holds for the
other decision tree models. Similar to decision tree rules, the cluster and discriminant classi�cation
models also provide ranges for acceptable metric values, and they report the top ten measures
that deviate from the underlying models. Some of the model deviations are straightforward to
correct, provided the designer understands the model output and relevant measures. Other model
deviations are not as straightforward to correct, such as introducing additional links and content or
reducing the reading complexity. Future work on automating design changes should make it easier
to interpret and use the models to improve designs.

Based on the patterns reected in Tables 8.4 and 8.5 and the observations generated by the
analysis discussed above, a list of possible ways to improve the site was derived. The changes below
are ordered based on their potential impact (how much they mitigate measures that were frequently
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Measure Value Model Range

Minimum Font Size 10.0 (8.76{9.16)
Minimum Color Use 16.0 (0.26{6.42)
Spelling Error Count 0.0 (0.14{2.88)
Good Panel Color Combinations 1.0 (0.00{0.90)
Self Containment 2.0 (0.72{1.78)
Body Color Count 3.0 (0.80{2.68)
Average Graphic Width 207.0 (41.77{191.96)
Sans Serif Word Count 0.0 (20.18{614.98)
Minimum Graphic Height 32.0 (0.00{28.61)
Text Link Count 2.0 (2.75{37.15)

Table 8.3: Top ten measures that deviate from the content page quality model for the example content
page. The measures are presented in their order of importance. Each range reects one standard deviation
unit around the mean in the model.

reported as being inconsistent). The recommendations only apply to the results generated during
the initial application of the models; subsequent model applications revealed further changes that
are not discussed here. No recommendations are made to address the accessibility and Weblint
errors, since the roles of these measures in improving design quality are unclear. Speci�c changes
made as well as the results of the changes are discussed in the next section.

1. Increase the number of text links and corresponding link text (text link, link word, and good
link word counts). This will simultaneously increase the total number of links and internal
links (link and internal link count) and decrease link element variation.

2. Use a smaller font size for some text, such as the footer text (minimum font size).

3. Decrease color overuse for page text and introduce an accent color (minimum color use).

4. Minimize or eliminate the use of italicized words in body text (italicized body word count).

5. Minimize text positioning (changes from ush left and columns where text starts; text posi-
tioning and column counts).

6. Minimize font combinations (font face, size, bolding, and italics combinations; font count).

7. Reduce the sizes of images (average graphic width, minimum graphic height, and graphic
pixels).

8. Improve the page layout to reduce vertical scrolling (vertical scrolls).

9. Use tables with explicit widths to control the page layout (�xed page width use).

10. Vary the text elements and the formatting of text elements on the page (text element variation,
good body and display word counts, sans serif word count).

11. Reduce the number of colors used for body text (body color count).
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Page-Level Site-Level
CCQ PTQ CCQ

Measure OQ Cls H E H L C Freq. OQ H E

Text Element Measures
Good Body Word Count

p
14.29%

Display Word Count
p

14.29%
Good Display Word Count

p
14.29%

Link Word Count
p p p p

57.14%
Good Link Word Count

p p p p
57.14%

Spelling Error Count
p

14.29%

Link Element Measures
Text Link Count

p p p p
57.14%

Link Count
p p p

42.86%
Internal Link Count

p p p
42.86%

Redundant Link Count
p

14.29%

Graphic Element Measures
Graphic Ad Count

p
14.29%

Text Formatting Measures
Italicized Body

p p
28.57%

Word Count
Sans Serif Word Count

p p
28.57%

Minimum Font Size
p p p p

57.14%
Body Color Count

p
14.29%

Text Cluster Count
p

14.29%
Text Column Count

p
14.29%

Text Positioning Count
p p

28.57%

Link Formatting Measures
No measures reported
Graphic Formatting Measures
Average Graphic Width

p p
28.57%

Minimum Graphic Height
p p

28.57%
Graphic Pixels

p
14.29%

Table 8.4: Measures reported as being inconsistent with the page-level and site-level models for the example
health education site (Table 1 of 2). A

p
indicates that a measure was reported as being inconsistent on

at least one of the nine pages by at least one of the models. The page-level models include the overall
page quality (OQ), small-page cluster (Cls), content category quality (CCQ), and page type quality (PTQ)
models. The health (H) and education (E) page models are used. The home (H), link (L), and content (C)
page type models are used. The frequency column (Freq.) reects the total number of times a measure is
reported as being inconsistent divided by seven (number of page-level models). The site-level models include
the overall site quality (OQ) and content category quality (CCQ) models; the health (H) and education (E)
site models are used.
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Page-Level Site-Level
CCQ PTQ CCQ

Measure OQ Cls H E H L C Freq. OQ H E

Page Formatting Measures
Minimum Color Use

p p p p
57.14%

Good Panel Color
p

14.29%
Combinations
Bad Panel Color

p
14.29%

Combinations
Vertical Scrolls

p
14.29%

Font Count
p p

28.57%
Fixed Page Width Use

p p
28.57%

Self Containment
p

14.29%

Page Performance Measures
Bobby Priority 2 Errors

p p
28.57%

Bobby Browser Errors
p p p p

57.14%
Weblint Errors

p p
28.57%

Graphic Bytes
p

14.29%
Object Count

p
14.29%

All Page Text Terms
p p

28.57%
All Page Text Score

p
14.29%

Site Architecture Measures
Link Element Variation

p
Text Element Variation

p

Table 8.5: Measures reported as being inconsistent with the page-level and site-level models for the example
health education site (Table 2 of 2). A

p
indicates that a measure was reported as being inconsistent on

at least one of the nine pages by at least one of the models. The page-level models include the overall
page quality (OQ), small-page cluster (Cls), content category quality (CCQ), and page type quality (PTQ)
models. The health (H) and education (E) page models are used. The home (H), link (L), and content (C)
page type models are used. The frequency column (Freq.) reects the total number of times a measure is
reported as being inconsistent divided by seven (number of page-level models). The site-level models include
the overall site quality (OQ) and content category quality (CCQ) models; the health (H) and education (E)
site models are used.
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8.6 Improving the Site

Although the example site is somewhat aesthetically pleasing and highly consistent across
pages within the site, the individual pages and the site as a whole are classi�ed as being of poor
quality. The pages were modi�ed to incorporate a subset of the recommendations discussed above.

� To improve the color and text link counts and simultaneously reduce the link count variation,
a link text cluster (i.e., an area of text links shaded with a di�erent background color to make
it stand out) was added as a footer at the bottom of each page; the text links in the cluster
mirror the content of the graphical links. It was not necessary to split the link page into
multiple pages, because adding the footer decreased the link element variation from 31% to
7%.

� To improve text formatting and the text element variation score: headings were added to
break up paragraphs; additional font variations were used { Arial font (sans serif) for body
text and Trebuchet (serif) for headings; and the font size of the copyright text was reduced
to 9pt. The color of headings was also changed to gold for consistency with the models. All
of these changes were implemented via an internal stylesheet; the stylesheet also improved
the self-containment scores.

� To improve the emphasized (i.e., bolded, colored, italicized, etc.) body text scores, italics and
colors within body text were converted to bold, uncolored body text on all pages. Colored,
non-italicized body text was also converted to uncolored body text.

� To improve the minimum color usage scores, a color accent was added to the vertical bars
between the text links in the footer of each page. A browser-safe color was selected as dictated
by a subsequent prediction by the overall page quality model.

� To reduce vertical scrolling, the logo and copyright notice at the bottom of the pages was
placed adjacent to each other in one table row. The sizes of images and borders around them
were also reduced to improve space utilization. Furthermore, text was wrapped to the left of
the images versus images not being inlined with text.

� To further improve the page layout, �xed widths (640 pixels) were used for the main layout
table.

Figures 8.7{8.9 depict the revised pages corresponding to the pages in Figures 8.1{8.3;
many of the changes are not visible since they appear at the bottom of the pages. Furthermore, only
a subset of the potential changes were implemented. Appendix D provides side-by-side comparisons
of the original and modi�ed versions of the three pages.

After making these changes, all of the pages were classi�ed correctly by functional type,
and they were rated as good pages overall as well as good health pages. Figure 8.10 depicts the
complex decision tree rule that classi�ed all of the pages as good overall. The median distance
to the small-page cluster was 4.7 as compared to 10.9 standard deviation units for the original
pages. Eight pages were rated as average pages based on their functional type; one was rated as
poor. In addition, �ve of the nine pages were rated as average education pages; the four remaining
pages were rated as poor. These di�erences in predictions demonstrate the potential diÆculty of
satisfying all of the models simultaneously. Hence, a clear design objective needs to be chosen prior
to making any changes, since the models could reveal a di�erent set of changes to make.
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Figure 8.7: Modi�ed home page for the example health education site. Gold headings were added, sans
serif fonts were used for body text, colored and italicized body text was removed, and a �xed page width
of 640 pixels was used. A footer navigation bar was added to the bottom of the page, an accent color was
added to the footer navigation bar, footer elements were reorganized to reduce vertical scrolling, and the
font size of footer text was reduced; none of these changes are visible in the screen shot. See Figure 8.9 for
the footer navigation bar.
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Figure 8.8: Revised link page for the example health education site. Gold headings were added, sans serif
fonts were used for body text, colored and italicized body text was removed, the sizes of images were reduced,
and a �xed page width of 640 pixels was used. A footer navigation bar was added to the bottom of the page,
an accent color was added to the footer navigation bar, footer elements were reorganized to reduce vertical
scrolling, and the font size of footer text was reduced; none of these changes are visible in the screen shot.
See Figure 8.9 for the footer navigation bar.
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Figure 8.9: Revised content page for the example health education site. Gold headings were added, sans
serif fonts were used for body text, colored and italicized body text was removed, the sizes of images were
reduced, and a �xed page width of 640 pixels was used. A footer navigation bar was added to the bottom
of the page, an accent color was added to the footer navigation bar, footer elements were reorganized to
reduce vertical scrolling, and the font size of footer text was reduced; not all of these changes are visible in
the screen shot.



217

if ((Minimum Font Size is missing OR (Minimum Font Size � 9.5)) AND (Graphic Ad Count
is missing OR (Graphic Ad Count � 2.5)) AND (Exclaimed Body Word Count is missing
OR (Exclaimed Body Word Count � 11.5)) AND (Minimum Graphic Height is missing OR
(Minimum Graphic Height � 38.5)) AND (Vertical Scrolls is missing OR (Vertical Scrolls �
3.5)) AND (Bad Panel Color Combinations is missing OR (Bad Panel Color Combinations
� 2.5)) AND (Object Count is missing OR (Object Count � 4.5)) AND (Good Meta Tag
Word Count is missing OR (Good Meta Tag Word Count � 42.5)) AND (Minimum Color
Use is missing OR (Minimum Color Use � 12.5)) AND (Horizontal Scrolls is missing OR
(Horizontal Scrolls � 0.5)) AND (Weblint Errors is missing OR (Weblint Errors � 54.5))
AND (Colored Body Word Count is missing OR (Colored Body Word Count > 0.5)) AND
(Emphasized Body Word Count is missing OR (Emphasized Body Word Count � 183))
AND (Bolded Body Word Count is missing OR (Bolded Body Word Count � 43.5)) AND
(Script Bytes is not missing AND (Script Bytes � 173.5)) AND (Text Positioning Count is
missing OR (Text Positioning Count � 9)) AND (Serif Word Count is missing OR (Serif
Word Count � 325.5)) AND (Italicized Body Word Count is missing OR (Italicized Body
Word Count � 1.5)) AND (Graphic Count is not missing AND (Graphic Count � 15.5))
AND (Minimum Graphic Width is missing OR (Minimum Graphic Width � 97.5)) AND
(Bobby Browser Errors is missing OR (Bobby Browser Errors > 6.5)))

Class = Good

This rule classi�es a page as a good page because it: uses a smaller font size for some text;

has fewer than sixteen images and no graphical ads; uses at least one image with a height

smaller than 39 pixels as well as at least one image with a width smaller than 98 pixels; has

fewer than 183 total emphasized (i.e., italicized, bolded, colored, etc.) body words, but has

fewer than 11.5 exclaimed body words (i.e., body words followed by exclamation points),

fewer than 44 bolded body words, fewer than two italicized body words, and at least 1

colored body word; requires fewer than four vertical scrolls and no horizontal scrolls; starts

text in nine or fewer vertical positions; uses fewer than 2.5 bad panel color combinations

and uses an accent color; uses no scripts, applets, or other objects; uses fewer than 43 good

meta tag words and has fewer than 325 words formatted with serif fonts; and has fewer than

55 Weblint errors and more than six Bobby browser errors.

Figure 8.10: Decision tree rule reported for all of the modi�ed example pages. This rule was reported by
the overall page quality model.



218

The site was still classi�ed as a poor site overall, but for a di�erent reason { too much text
element variation. The original site had very little variation in text elements (body and display
text in particular); adding headings to pages increased the text element variation (75.5%) above
the acceptable threshold of 51.8%. Ensuring that all pages contain similar amounts of display text
is probably the simplest way to resolve this issue. Some pages, such as the example link page, have
long headings, while other pages have relatively short headings. The site was also classi�ed as a
poor health site and a good education site, consistent with classi�cations before the modi�cations;
the same decision tree rules were reported (see Figure 8.4). The median overall page, education
page, and health page quality predictions contradicted the site-level models.

8.7 Summary

This chapter demonstrated the ability to apply the pro�les of highly-rated interfaces to-
wards assessing and improving new sites. This capability signi�es a major �rst step towards achiev-
ing the fundamental goal of this dissertation { enabling everyday users to produce high-quality Web
sites. However, much work remains to be done to fully support this goal. In particular, an approach
for suggesting interface improvements in an automated manner needs to be developed. Further-
more, an interactive evaluation tool needs to be developed to support iterative design. Future work
will focus on expanding the capability demonstrated in this chapter.

The example assessment provided more insight into what the pro�les actually represent
and the type of design changes informed by them. The assessment suggests that the pro�les provide
some support for re�ning an implemented site, mainly improving the amount of text on the page,
text formatting, color combinations, font usage, and other page layout considerations. The pro�les
do not support improving early site designs or the content; future work will focus on these issues.
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Chapter 9

Evaluating the Web Interface Pro�les

9.1 Introduction

Chapter 8 demonstrated that the pro�les of highly-rated Web interfaces could be used by
the author to modify an example Web site. However, it is not clear whether it is possible for others
to use these pro�les to modify designs. Furthermore, it is not clear whether the resulting designs
are of a higher quality than the original ones.

This chapter discusses a study conducted to determine whether changes made based on
two pro�les { the overall page quality and the good cluster models { improve design quality. The
goal of the study was to determine if participants preferred the modi�ed pages and sites above the
original ones. Whether or not preferences reect usability was not examined in this study, and
consequently is not claimed. The study also demonstrates that two undergraduate students and a
graduate student were able to use the models to revise study sites.

9.2 Study Design

A study was conducted between November 26, 2001 and November 27, 2001, in accordance
with guidelines established by the Committee for the Protection of Human Subjects (project 2000-
1-36). Thirteen participants completed a within-subjects experiment wherein they performed two
types of tasks. The �rst task { page-level analysis { required participants to explore two alternative
designs for a Web page and to select the design that they felt exhibited the highest quality; there
were a total of �fteen comparisons for pages from three sites. The second task { site-level analysis
{ required participants to explore a collection of pages from a Web site and to rate the quality of
the site on a 5-point scale. Participants rated alternative designs for two sites; there were a total
of four site ratings.

Given that only a subset of pages were modi�ed for each site, it was not feasible to have
participants attempt to complete information-seeking tasks during this study. Instead, the page-
level and site-level tasks were designed to be consistent with the perceived usability condition in
the usability study discussed in Chapter 7.

9.2.1 Study Sites

For the analysis, �ve sites were randomly selected from various Yahoo categories, such as
�nance and education; the sites included the one discussed in Chapter 8. Similar to the example site
in Chapter 8, the other sites were selected because they had valuable content but also exhibited some
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Id #Pages Category Description

Site-Level Analysis
1 9 Education Information about a community health-education

Health museum and science center as well as its teaching
programs. The design consists of small pages
with a few graphical links and some colored and
italicized body text. This site was discussed in
Chapter 8.

2 7 Education Information on the World Wide Web and computer
use for K{12 teachers. The design consists of long
pages of text and text links with a logo image at
the top; horizontal rules are used extensively, but
very little color is used.

Page-Level Analysis
3 5 Community Information about a bridge club, including

competition results. The design consists of small
pages with tables or lists of text links, few images,
and several horizontal rules.

4 5 Finance Links to sites about the Information Economy.
The design consists of very long pages with lists of
annotated text links, few images, few colors, and
several horizontal rules.

5 5 Living Job listings and information about careers and
employment statistics. The design consists of long
pages with lots of color and images.

Table 9.1: Descriptions of sites used for the study.

problematic design issues. None of the sites were included in the statistical pro�le development.
Table 9.1 describes the sites used for the study, and Figures 9.1{9.5 depict example pages from
each site.

The Site Crawler tool was used to download pages from the �ve sites; the default crawling
options were used (i.e., download �fteen level-one pages and three level-two pages from each level-
one page). Only �ve pages were selected from sites 3, 4, and 5 for the page-level comparisons. All
nine of the available pages were used for site 1, and seven pages were selected for site 2.

The same process followed in Chapter 8 was also followed to create modi�ed versions of
the 31 pages. Speci�cally, output from the overall page quality and good page cluster models was
used to iteratively make changes to pages so they would be more consistent with the models. Two
undergraduate students (Deep Debroy and Toni Wadjiji) and a graduate student (Wai-ling Ho-
Ching) modi�ed sites 3, 4, and 5; the author modi�ed sites 1 and 5 and made minor �nal revisions
to sites 4 and 5. The students had little or no training in Web design and had very little experience
with building Web sites. Furthermore, they did not have prior experience with the Analysis Tool,
the quantitative measures, nor the pro�les.

The students made straightforward changes directly based on the decision tree rules and
cluster model results. Students had to rely on their own intuition in cases were design changes
were not as straightforward. The students reported that they had some diÆculty making changes
that were suggested by the pro�les, such as increasing the number of text columns or decreasing
color usage. The students also emphasized that it was not enough to use the overall page quality
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Figure 9.1: Example page taken from site 1 (http://www.hallofhealth.org/puppetshows.html; September
14, 2001); this is the content page discussed in Chapter 8. The page was rated poor overall and was 8.33
standard deviation units away from the small-page cluster centroid.
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Figure 9.2: Example page taken from site 2 (http://web66.coled.umn.edu/List/Default.html; November 4,
2001). The page was rated poor overall and was 14.97 standard deviation units away from the small-page
cluster centroid.
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Figure 9.3: Example page taken from site 3 (http://www.cambridgebc.org.uk/CBC.html; November 4,
2001). The page was rated poor overall and was 26.46 standard deviation units away from the small-page
cluster centroid.
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Figure 9.4: Example
page taken from site 4 (http://www.sims.berkeley.edu/resources/infoecon/Background.html; November 4,
2001). The page was rated poor overall and was 32.78 standard deviation units away from the large-page
cluster centroid.
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Figure 9.5: Example page taken from site 5 (http://www.jobweb.com/employ/salary/default.cfm; Novem-
ber 25, 2001). The page was rated poor overall and was 5.99 standard deviation units away from the
small-page cluster centroid.
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model by itself; the cluster models needed to be used as well. Only the overall page quality and
good cluster models were used to inform design changes, and the following rules were observed.

� Changes were made solely based on the Analysis Tool results. Pages were modi�ed to conform
as much as possible to the mapped good page cluster model (subgroups of good pages with
similar characteristics { small-page, large-page, or formatted-page) �rst; then, if possible,
pages were also modi�ed to be consistent with the overall page quality model (model that
does not consider the content category or page type in predictions). The median overall page
quality was used as the site quality prediction.

� The content remained the same in the original and modi�ed sites, except in instances where
footers or headings were dictated by the model results. If the models dictated that the amount
of content on a page needed to be reduced, then the page was split into multiple pages as
necessary.

� One change was made at a time and its impact was subsequently assessed. Changes had to
result in improved or equal quality (i.e., a reduced distance from the cluster centroid or a
change in prediction from poor to good) or they were discarded.

� The modi�ed pages had to have some noticeable di�erences from the original pages.

Table 9.2 summarizes the di�erences between the original and modi�ed pages as measured
by the overall page quality and cluster models. For the original pages, 6.5% were rated good overall,
6.5% were rated average, 87.1% were rated poor, and the median distance to the mapped cluster
centroid was 15.3 standard deviation units. Changes similar to those made for site 1 in Chapter
8 were also made for the four other sites. The changes included reorganizing text or images
to reduce scrolling, changing text formatting (e.g., removing italicized body text), reducing text
clustering, and changing colors as needed. The models revealed that other changes related to the
type of content (e.g., body and link text words) and the similarity in content between source and
destination pages were needed, but these changes were not made. For the modi�ed pages, 96.8%
were rated good overall, 3.2% were rated average, and the median distance to the mapped cluster
centroid was 6.31 standard deviation units. The predictions suggested that there were potentially
noticeable di�erences between pages in most cases. Figures 9.6{9.10 depict modi�ed versions of the
example pages in Figures 9.1{9.5. Appendix D provides side-by-side comparisons of the original
and modi�ed versions of the �ve pages.

9.2.2 Participants

Study participants were recruited from Kaiser Permanente's Web Portal Services Group1.
This group is responsible for designing, building, and maintaining numerous intranet and Internet
sites; hence, designing quality Web interfaces is extremely important to people within the group.
Thirteen participants completed the study; participants represented the three roles below.

� Professional Web Designers - have received formal training (i.e., earned a college or
art school degree) in Web or graphic design and have actively designed Web sites. These
participants were employed as designers; four of the thirteen participants were from this
group.

1The author was employed as a member of this group at the time of the study and had working relationships with
some of the study participants. Participants were not informed about the purpose of the study or the hypotheses
being tested.
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Pair Original Page Modi�ed Page
Id Quality Cluster Distance Quality Cluster Distance

Site 1
{ Poor Small-Page 22.74 Good Small-Page 5.16
{ Poor Small-Page 16.5 Good Small-Page 4.61
{ Poor Small-Page 18.74 Good Small-Page 17.68
{ Poor Small-Page 6.81 Good Small-Page 3.88
{ Poor Small-Page 6.26 Good Small-Page 3.81
{ Poor Small-Page 7.95 Good Small-Page 5.11
{ Poor Small-Page 10.88 Good Small-Page 4.56
{ Poor Small-Page 8.33 Good Small-Page 5.04
{ Poor Small-Page 15.94 Good Small-Page 4.72
Site 2
{ Poor Small-Page 21.05 Good Small-Page 10.86
{ Poor Small-Page 14.97 Good Small-Page 7.83
{ Poor Small-Page 14.68 Good Small-Page 6.31
{ Poor Small-Page 20.42 Good Small-Page 6.83
{ Poor Small-Page 15.03 Good Small-Page 6.58
{ Poor Large-Page 18.14 Good Large-Page 19.2
{ Poor Small-Page 16.21 Good Small-Page 7.59
Site 3
1 Poor Small-Page 26.46 Good Small-Page 5.86
2 Average Small-Page 14.6 Good Small-Page 5.71
3 Poor Small-Page 14.77 Good Small-Page 6.05
4 Poor Small-Page 15.3 Good Small-Page 7.32
5 Poor Small-Page 15.09 Good Small-Page 7.52
Site 4
6 Poor Large-Page 32.78 Good Small-Page 11.93
7 Poor Large-Page 23.05 Good Small-Page 394.19
8 Poor Large-Page 49.3 Good Small-Page 394.18
9 Good Large-Page 38.61 Good Large-Page 11.79
10 Poor Small-Page 8.31 Good Small-Page 7.19
Site 5
11 Average Small-Page 15.43 Average Small-Page 15.48
12 Poor Small-Page 11.23 Good Small-Page 4.82
13 Poor Large-Page 93.87 Good Small-Page 4.39
14 Poor Small-Page 5.56 Good Small-Page 5.42
15 Good Small-Page 5.99 Good Small-Page 5.79

Table 9.2: Model predictions for the original and modi�ed pages. The numbers in the �rst column are
for the page-level analysis; the { indicates pages that are included in the site-level analysis. The quality
predictions are from the overall page quality model. The reported clusters and cluster distances are from the
good page cluster models; the distance reects the number of standard deviation units of di�erence between
metric values on a page and metric values at the centroid of a cluster. In most cases, the modi�ed pages are
closer to cluster centroids and are predicted to be of a higher quality than the original pages.
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Figure 9.6: Modi�ed page for site 1; this is the modi�ed content page discussed in Chapter 8. The page
was rated good overall and was 5.04 standard deviation units away from the small-page cluster centroid.
The original page was rated poor overall and was 8.33 standard deviation units away from the small-page
cluster centroid (see Figure 9.1).
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Figure 9.7: Modi�ed page for site 2. The page was rated good overall and was 7.83 standard deviation
units away from the small-page cluster centroid. The original page was rated poor overall and was 14.97
standard deviation units away from the small-page cluster centroid (see Figure 9.2).
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Figure 9.8: Modi�ed page for site 3. The page was rated good overall and was 5.86 standard deviation
units away from the small-page cluster centroid. The original page was rated poor overall and was 26.46
standard deviation units away from the small-page cluster centroid (see Figure 9.3).
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Figure 9.9: Modi�ed page for site 4. The page was rated good overall and was 11.93 standard deviation
units away from the small-page cluster centroid. The original page was rated poor overall and was 32.78
standard deviation units away from the large-page cluster centroid (see Figure 9.4).
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Figure 9.10: Modi�ed page for site 5. The page was rated good overall and was 5.79 standard deviation
units away from the small-page cluster centroid. The original page was rated poor overall and was 5.99
standard deviation units away from the small-page cluster centroid (see Figure 9.5).
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Id Age Gen Education CmpExp IExp IUse EngExp VI

1 46-55 Male Some College Beginner Average 1{2 Average No
2 26-35 Male College Graduate Expert Expert >10 Expert No
3 26-35 Female College Graduate Average Average 6{10 Expert No
4 36-45 Female Post Graduate Average Expert >10 Expert No
5 >55 Female College Graduate Expert Expert 1{2 Expert No
6 26-35 Female College Graduate Average Average >10 Average No
7 36-45 Male Some College Expert Expert >10 Average No
8 46-55 Male Post Graduate Average Expert >10 Expert No
9 36-45 Male Post Graduate Expert Expert >10 Expert No
10 26-35 Female College Graduate Expert Expert 6{10 Expert No
11 26-35 Male College Graduate Expert Expert >10 Expert No
12 46-55 Female Post Graduate Expert Expert >10 Expert No
13 26-35 Female College Graduate Average Expert 3{5 Expert No

Table 9.3: Summary of participants' demographic information. Participants provided their age and gender
(Gen) and described their pro�ciency with computers (CmpExp), the Internet (IExp), and the English
language (EngExp). Participants also reported the number of hours they spend using the Internet weekly
(IUse) and whether or not they had a visual impairment that possibly interfered with their ability to assess
Web design quality (VI).

� Non-Professional Web Designers - have not received formal training (i.e., no degree) in
Web or graphic design, but have played a role in designing Web sites or creating Web pages.
These participants were employed as Web Coordinators; three of the thirteen participants
were from this group.

� Non Web Designers - have not received formal training, have not designed Web sites, and
have not created Web pages. These participants were typically developers and managers; six
of the thirteen participants were from this group.

Participants answered demographic questions prior to starting the study. Speci�cally,
participants provided their age, gender, as well as information about their education background,
computer and Internet experience, the number of hours they use the Internet weekly, English
experience, and whether they had a visual impairment that could interfere with their ability to assess
the quality of Web interfaces. Table 9.3 summarizes responses to these questions. Participants were
also asked several questions about their role and experience with designing Web sites, including
the number of sites they have designed. Table 9.4 summarizes responses to these questions.

There were seven female and six male participants. The typical participant was 26{35, a
college graduate, an expert computer and Internet user, spent more than ten hours online weekly,
was an expert with the English language, and had no visual impairments. None of the participants
had visual impairments. All of the professional Web designers have designed more than ten sites;
half of them felt that they were experts at creating quality sites, while the other half felt that they
were average. Two of the non-professional Web designers have also designed more than 10 sites
and all of them felt that they were experts at creating quality sites. Most of the non Web designers
had designed from zero to three sites and felt that they were beginners at creating quality sites.
Based on the demographic information, all of the participants appear to have been appropriate for
this study.
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Id Role DesignExp #Sites Designed

1 Non Web Designer Beginner 0{3
2 Professional Web Designer Expert >10
3 Non Web Designer Beginner 0{3
4 Non Web Designer Average 0{3
5 Non-Professional Web Designer Expert 0{3
6 Non Web Designer Beginner 0{3
7 Professional Web Designer Average >10
8 Non Web Designer Beginner 0{3
9 Non-Professional Web Designer Expert >10
10 Professional Web Designer Expert >10
11 Non-Professional Web Designer Expert >10
12 Non Web Designer Average 4{10
13 Professional Web Designer Average >10

Table 9.4: Summary of participants' Web design roles and experience. Participants described their pro-
�ciency with creating quality Web sites (DesignExp) and reported the number of sites they had designed
prior to the study.

9.2.3 Testing Interface

A testing interface was developed using HTML forms, JavaScript, and PERL. In addi-
tion, a script was developed to generate �ve randomized experiment designs. The order of page
comparisons was randomized and controlled such that pages from the same site were not compared
consecutively; the presentation of the two page designs was also randomized. Similarly, the order
of site ratings was randomized and controlled such that the two versions of a site were not rated
consecutively.

9.2.4 Testing Session

The study consisted of a 1-hour session wherein participants completed 15 page-level
comparisons and four site-level evaluations. Participants were initially given an instruction sheet
(see Figure 9.11) that provided an overview of the study procedure. After reviewing the instruction
sheet, participants completed a statement of informed consent and moved to a computer station
for completing the study.

The study interface requested demographic information and assigned the participant to
one of the 5 experiment designs. The interface subsequently guided participants through two types
of tasks as discussed below.

� Page-Level Analysis. Participants were instructed to initially explore alternative versions
of a Web page. Then, participants were asked to select the version that they felt exhibited
the best quality. Participants were also asked to explain why they selected the design. Figure
9.12 depicts the screens for performing the page-level tasks.

� Site-Level Analysis. Participants were instructed to initially explore the pages from a Web
site. Then, participants were asked to rate the quality of the site using a 5-point Likert
scale; ratings ranged from very poor (1) to very good (5). Participants were also asked to
explain why they rated the site as they did. Figure 9.13 depicts the screens for performing
the site-level tasks.
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Web Site Quality Study Instructions

I. Overview of the Study
The purpose of this study is to get user feedback on the quality of a collection of web pages
and sites. Basically, you will explore the pages and sites and provide responses to a number of
statements about their quality. There is no risk to you, and you will be compensated with a free
lunch for your participation.

Please read and sign the informed consent form and return to the tester.

II. Overview of the Study Procedure

General goal:
Rate web pages and sites. There will be two kinds of tasks. (a) Compare two alternative designs
for a web page (b) Explore pages on a site and rate the site.

Tasks
(a) Compare two alternative designs for a web page.
In the �rst part of the task, you will be asked to explore the two designs. Look at each design
and select the design that you feel exhibits the best quality. Please do not spend more than
a few minutes exploring the designs.
You are encouraged to comment on why you selected one design over the other one.

(b) Explore pages on a site and rate the site.
You will be presented with web pages from a site and asked to explore the pages. Then rate the
site. Please do not spend more than a few minutes exploring the pages.

Rating the site:

You will be asked to rate the site on a 5-point scale (Very

Poor - Very Good). You are encouraged to comment on why you rated the site as you did.

Figure 9.11: Instructions given to study participants.
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Figure 9.12: Testing interface for completing the page-level analysis tasks. The smaller browser window
provides links to pages that are displayed in the larger window.

During the testing session, participants completed the page-level tasks and then completed
the site-level tasks. The testing interface tracked whether participants explored all of the pages in
both sections of the study. A message window appeared whenever participants did not explore all
of the pages; participants were also restricted from moving forward in the study until they explored
all pages. All of the links on pages were redirected to an error page reminding participants to stay
focused on the individual pages.

9.2.5 Testing Environment

Participants completed the study in either the Kaiser Permanente Web Portal Services
Group's computer training room or at their oÆce computer; participants worked individually in
both scenarios. All computer stations had PCs running Microsoft Windows NT 4.0 with 128 MB of
RAM. Stations also had 15" or 17" monitors and high speed LAN connections. Participants used
the Netscape Navigator 4.7 browser. The testing interface resized the browser window to 800 x 600
pixels (equivalent to a 15" monitor) and sites were not cached to provide a realistic experience. User
surveys have shown that over 50% of Internet users access sites with 800 x 600 monitor resolution
and 56K and slower connection speeds [DreamInk 2000].
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Figure 9.13: Testing interface for completing the site-level analysis tasks. The smaller browser window
provides links to pages that are displayed in the larger window.
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9.3 Data Collection

The analysis data consisted of 195 page-level (i.e., page preference) responses and 26
site-level (i.e., ratings of the original and corresponding modi�ed sites) responses. Participants
provided freeform comments in most cases. The site-level ratings were screened to replace small
outliers with the next largest value as appropriate; the resulting data followed a normal distribution
and exhibited equal variances.

9.4 Page-Level Results

The page-level analysis focused on testing the hypothesis that pages modi�ed based on
the overall page quality and the good cluster models are of a higher quality than the original pages.
Recall that remodeling did not entail changing the content on pages, except for redistributing
content over multiple pages, adding headings, etc. as dictated by the models. Thus, most of the
di�erences between the original and modi�ed pages were minimal and focused on the page layout
and text formatting. The results showed that modi�ed pages were preferred 57.4% of the time, while
the original pages were preferred 42.6% of the time. The Chi-Square test revealed this di�erence
to be signi�cant (�2 = 4.3, asymptotic signi�cance of .038). ANOVAs revealed that there were no
di�erences in preferences among the three Web design roles.

Figure 9.14 depicts results for the �fteen page-level comparisons. Participants preferred
the modi�ed pages in ten of the �fteen comparisons. Their comments about why they preferred
the modi�ed pages supported the changes made based on the pro�les. In particular, participants
felt that the modi�ed pages were easier to read, required less scrolling, were cleaner, used better
color schemes, made better use of whitespace, used headings, eliminated italics, and used better
fonts. Several comments are provided below.

\2 columns with shorter lines of te[x]t [is] easier to read. Primary navigation under
the headline gives i[t] more prominence. Overall composition is better." (page pair 6,
professional Web designer)

\all page �ts in window." (page pair 2, non-professional Web designer)

\The text is easy to read. The text on the other page is to[o] long." (page pair 9, non
Web designer)

Comments also revealed that in some cases, mainly with page pairs 1, 3, 4, 5, and 11, par-
ticipants responded negatively to changes made based on the pro�les. For example, modi�cations
for the �rst page pair (site 3) included reorganizing graphical links and texts to minimize vertical
scrolling. However, participants preferred the original version of this page because the width of text
was restricted to �t within the browser window (i.e., the page did not require horizontal scrolling).
This horizontal scrolling was introduced when the undergraduate student modi�ed the page; this
was an unfortunate mistake that arose because of the student's inexperience with HTML and Web
design. This change did not impact the overall quality prediction, nor was it among the top ten
deviations from the cluster model; most of the top ten deviations were associated with text and
text formatting measures, such as the sans serif word count and text cluster and column counts.

Figure 9.14 shows that for four of the �ve pages on site 3 (page pairs 1{5), the original pages
were preferred over the modi�ed pages. As the Chi-Square test showed, this was not an expected
outcome. Examining the model output for the modi�ed pages revealed that other changes, such
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Figure 9.14: Results for the 15 page-level comparisons. Comparisons 1{5 were for pages from site 3.
Comparisons 6{10 were for pages from site 4. Comparisons 11{15 were for pages from site 5.

as using sans serif fonts for text, were not implemented by the undergraduate student. Hence,
it appears that the modi�ed pages were insuÆciently remodeled for comparison. If responses for
pages on this site are excluded, then the results for the 2 remaining sites show that modi�ed pages
were preferred 66.9% of the time, while the original pages were preferred 33.1% of the time; this
di�erence was highly signi�cant (�2 = 14.9, asymptotic signi�cance of .000).

Several participants reported that in some cases, they could not tell the di�erence between
the two pages and selected the �rst one; pair thirteen is one example. Given the restrictions on page
modi�cations, it was not always possible to produce radically di�erent designs. However, several
participants also verbally commented on how subtle changes made a lot of di�erence.

9.5 Site-Level Results

The site-level analysis focused on testing the hypothesis that sites with pages modi�ed
based on the overall page quality and the good page cluster models are of a higher quality than the
original sites. Similarly to the page-level analysis, the pro�les were used to modify individual pages
in the site. The overall site quality model was not used to assess the site given the discrepancies
discussed in Section 8.6. Instead, the median overall page quality was used for site level assessments;
as the quality of the individual pages improved, so did the median overall page quality. Table 9.5
showed that almost all of the original pages were rated poor overall, while almost all of the modi�ed
pages were rated good overall; the corresponding median overall page quality was poor and good,
respectively.

Figures 9.15 and 9.16 depict the distributions of ratings for the original and modi�ed sites;
both distributions are nearly normal. Participants rated the quality of the original sites as 3.0 on
average (� = 1.36); however, they rated the quality of modi�ed sites as 3.5 on average (� = 1.03).
A paired samples t-test revealed that this di�erence was signi�cant (p = .025); this means that
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Figure 9.15: Distribution of ratings for the original versions of the 2 sites.

Mean Std. Dev.
Design Role Orig. Mod. Orig. Mod. Sig.

Professional Web Designer 2.63 3.38 1.30 0.92 0.020
Non-professional Web Designer 3.00 3.83 1.26 0.98 0.042
Non Web Designer 3.25 3.42 1.48 1.16 0.674

Table 9.5: Site ratings for the three groups of participants: 4 professional Web designers; 3 non-professional
Web designers; and 6 non Web designers. Paired t-tests were used to compute the signi�cance values.

each participant tended to rate the modi�ed version higher than the original version. Similarly
to the page-level analysis, participant comments provided support for many of the changes made
based on the pro�les.

There were di�erences in ratings among participants in the three roles. Table 9.5 shows
a wider di�erence in mean ratings for the professional and non-professional Web designers; these
di�erences are also signi�cant. However, the table shows little di�erence in average ratings for the
non Web designers, and the di�erence is not signi�cant. Thus, it appears that the site level results
are somewhat skewed possibly by the non Web designers' inability to gauge di�erences between
the two versions of the sites. The comments showed that they often questioned whether they were
rating the same site again. Some of these participants even stated that they rated both versions of
the site the same.

For the analysis above, ratings for both sites were aggregated; however, participants'
ratings for the individual sites were also examined. The modi�ed versions of both sites were rated
higher than the original versions, but the di�erences were not signi�cant in most cases (see Table
9.6). Similarly to the discussion above, there were di�erences in ratings among the three participant
groups. With respect to the example site discussed in Chapter 8 (site 1), Table 9.6 shows that in
all cases participants rated the modi�ed version slightly higher than the original site, although the
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Figure 9.16: Distribution of ratings for the modi�ed versions of the 2 sites.

di�erence was not signi�cant in any case.
The intent of site remodeling was not to produce the best possible site and no claim is

made about the modi�ed sites exhibiting high quality. Due to the restrictions on page modi�cations
(see Section 9.2.1), there were many issues that were not addressed, such as changing color schemes
and adding images and links. Some of these issues were reported by the models and others, such
as illegible text in images, were not. In many cases, participants' ratings and comments reected
their negative responses to these outstanding issues; it is likely that their responses also skewed the
results. For example, Table 9.6 shows that professional Web designers rated sites lower than non-
professional and non Web designers even though they rated the modi�ed sites higher. The intent
of site remodeling was to improve the quality of the designs in spite of the inherent problems; the
results suggest that this goal was accomplished.

9.6 Summary

This chapter presented results from a user study of �ve Web sites wherein thirteen partic-
ipants (four professional, three non-professional, and six non Web designers) completed two types
of tasks: 1. explore alternative versions of Web pages and select the ones exhibiting the highest
quality; and 2. explore pages from sites and rate the quality of the site. In preparation for the
study, three students { two undergraduates and one graduate { used the overall page quality and
good page cluster models to modify pages. The students were given access to an interactive ap-
pendix that summarized all of the quantitative measures and were able to ask the author questions
about the models and measures as needed. The study demonstrated that it was possible for people
other than the author to interpret and apply the models. The analysis focused on answering the
following questions.

� Do participants prefer the modi�ed pages over the original pages?

� Do participants rate the modi�ed sites higher than the original sites?
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Mean Std. Dev.
Site Orig. Mod. Orig. Mod. Sig.

All Roles
1 3.62 3.92 1.26 1.04 0.219
2 2.38 3.08 1.19 0.86 0.069

Professional Web Designers
1 3.50 3.75 1.29 1.26 0.391
2 1.75 3.00 0.50 0.00 0.015

Non-professional Web Designers
1 4.00 4.67 1.00 0.58 0.423
2 2.00 3.00 0.00 0.00 {

Non Web Designers
1 3.50 3.67 1.52 1.03 0.695
2 3.00 3.17 1.55 1.33 0.822

Table 9.6: Ratings for the 2 study sites. Paired t-tests were used to compute the signi�cance values; the
test did not return a signi�cance value for non-professional designers' ratings for site 2.

Analysis of page-level data showed that participants preferred the modi�ed versions of
pages 57.4% of the time and preferred the original versions of pages 42.6% of the time; this di�erence
was signi�cant. Analysis of site-level data showed that participants rated the modi�ed sites higher
than the original sites, and this di�erence was signi�cant. The site-level analysis also showed that
the modi�ed version of the site discussed in Chapter 8 was rated slightly higher than the original
site; however, the di�erence was not signi�cant. Participants' comments in both parts of the study
provided support for many of the changes made to pages in the example site in Chapter 8 (and the
other four) based on the Web interface pro�les.

Modi�cations made to the pages and sites were very conservative for this �rst study. This
is mainly because of the amount of e�ort required to manually make changes and because it was not
clear if changes made based on the models actually improved quality; the latter was examined by
the study itself. It is possible that less conservative changes would have resulted in larger di�erences
in page preferences and site ratings. Future studies will be conducted to re-examine this question
after recommendations and possibly modi�cations have been automated in some manner.
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Chapter 10

Applying the Web Interface Pro�les:

Empirical Examination of Web Design

Guidelines

10.1 Introduction

As discussed in Chapter 5, there are a huge number of Web design guidelines available in
print and on the Web. Oftentimes these recommendations are vague, contradictory, and most have
not been empirically validated. This chapter presents an analysis in which metric values in the
pro�les are compared against established guidelines for nine Web interface aspects listed below.

� Amount of text on a page

� Length and quality of link text

� Number and type of links on a page

� Use of non-animated and animated graphical ads

� Font styles and sizes

� Unique colors and color combinations

� Download speed

� Accessibility and HTML errors

� Consistency across pages

Many of the guidelines for these aspects relate to quantitative measures that play a major
role in predicting page and site quality; these measures were discussed during pro�le development
(Section 6.5.2) and in the assessment of the example site (Section 8.5). The pro�les are used to
derive thresholds (i.e., ranges of acceptable metric values) for measures that are relevant to the
Web design aspects above. However, thresholds for individual measures are not intended to be
used in isolation; as demonstrated by the example Web site assessment in Chapter 8, the models
encapsulate relationships among one or more measures that may not be reected by individual
measures. The analysis below primarily uses the good page clusters (i.e., small-page, large-page,
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and formatted-page), since they provide more context than the overall page quality model. In cases
where relevant measures are not included in the cluster models, the analysis uses the overall page
quality model instead. Similarly, the site-level analysis (consistency across pages) uses the overall
site quality model; only site-level measures are used by this model and consequently reported in
the analysis. In some cases the thresholds support current design guidelines, and in other cases
they counter them.

The discussion in this chapter is not intended to imply that the pro�les reect causal links.
For example, one limitation of the current models and tools is that they cannot improve on poor
content. However, the study in the previous chapter provided preliminary evidence that they can
provide insight on how to take good content that is poorly presented and improve its presentation,
thus improving users' experience in accessing that content. And, because it is possible to empirically
�nd commonalities among the presentation elements of the highly-rated sites, this provides strong
evidence that the presentational aspects of highly-rated sites that di�er from those of poorly-rated
sites are in fact important for good design. The assessment in this chapter examines guidelines
associated with some of these presentational aspects.

10.2 Page-Level Guidelines

The following sections summarize the comparison of thresholds derived from the good
page cluster and overall page quality models to Web design guidelines. Eight page-level aspects are
explored, including the amount of text on a page, the number and type of links, and color usage.

10.2.1 Amount of Text on a Page (Text Element)

The literature includes the following contradictory heuristics about the ideal amount of
text for a Web page. Furthermore, there is no concrete guidance on how much text is enough or
too much.

1. Users prefer pages with more content over breaking content into multiple pages [Landesman
and Schroeder 2000].

2. Keep text short; use 50% less text than in print publications [Nielsen 2000].

3. Break text up into smaller units on multiple pages [Flanders and Willis 1998; Nielsen 2000].

The three good page clusters (discussed in Section 6.7) provide some insight about the
ideal amount of text; however, the clusters do not provide insight on whether text is broken up into
multiple pages on good sites. Table 10.1 depicts key text element and formatting measures with
ranges based on the cluster centroids. The ranges suggest that pages with both a small and large
amount of text are acceptable; however, the pro�le discussion revealed that text formatting needs to
be proportional to the amount of text (see Section 6.10). For example, larger pages need to contain
more headings than smaller pages to facilitate scrolling. Table 10.1 shows that headings (display
word count), text clustering (text cluster count), as well as the number of columns where text starts
on pages (text column count) varies for the three clusters. The ranges are all signi�cantly di�erent
across clusters as determined by ANOVAs. Thus, the ranges in Table 10.1 appear to support all
of the guidelines above, although it is not possible to assess where text is broken up into multiple
pages.

One related question that is often posed, especially by novice designers, is whether or not
home pages should be restricted to one scroll. The overall page quality models shows that good
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Good Page Cluster
Measure Small-Page Large-Page Formatted-Page

Word Count 72.8{371.1 710.4{1008.7 218.6{517.0
Display Word Count 1.1{18.7 20.8{38.4 14.7{32.2
Text Column Count 0.6{4.4 1.9{5.7 6.4{10.1
Text Cluster Count 0.0{2.3 1.9{4.2 2.6{4.9

Table 10.1: Word count and other text element and formatting ranges for good pages. The cluster models
were used to derive ranges for all of the measures.

home pages typically require from 0.69 to 3.25 vertical scrolls, which suggests that it is not the case
that home pages are restricted to one scroll. However, this may depend on the content category.

10.2.2 Length and Quality of Link Text (Text Element)

Nielsen [2000] suggests that Web designers use 2{4 words in text links; however, Sawyer
and Schroeder [2000] suggest that Web designers use links with 7{12 \useful" words (i.e., words
that provide hints about the content on a destination page). The average link words measure for
all of the good pages suggests that text links on these pages contain from two to three words.
Furthermore, the average good link words measure suggests that one to three of these text link
words are not stop words or the word `click,' which suggests that they are potentially useful. Ranges
for each of the three good page clusters are very similar. Hence, the data suggests that link text
on good pages is consistent with Nielsen's heuristic.

10.2.3 Number and Type of Links on a Page (Link Element)

Section 5.5 provided several guidelines on the number and type of links on a page as
summarized below.

1. A large number of links impedes navigation [Spool et al. 1999].

2. Avoid using graphical text links; they are typically ignored [Sawyer and Schroeder 2000;
Spool et al. 1999] or may impede navigation [Scanlon and Schroeder 2000c; Spool et al. 1999].

3. Use corresponding text links (for graphical links) [Flanders and Willis 1998; Sano 1996].

4. Avoid within-page links, since they may be confusing [Nielsen 2000; Sawyer and Schroeder
2000; Spool et al. 1999].

5. Use multiple links to the same content with appropriate scent in each area [Spool et al. 2000].

6. Use di�erent forms for repeated links (e.g., text, graphical text, or image) [Sawyer and
Schroeder 2000].

7. Redundant links may cause confusion [Kim and Yoo 2000].

Table 10.2 provides ranges for the link, text link, redundant link, and link graphic counts
on pages in the three cluster models. The table also depicts ranges for link text cluster counts
and shows that the number of link text clusters are somewhat proportional to the number of links
on pages. For example, pages in the formatted-page cluster appear to have the most links as well
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Good Page Cluster Overall
Measure Small-Page Large-Page Formatted-Page Page

Link Count 12.4{41.2 35.8{64.6 54.0{82.9
Text Link Count 5.0{28.0 24.3{47.3 35.8{58.8
Redundant Link Count 1.4{9.1 4.6{12.3 9.0{16.7
Link Graphic Count 5.3{14.3 5.8{14.8 12.8{21.9
Page Link Count 0.0{5.0
Link Text Cluster Count 0.0{1.4 0.5{1.9 1.7{3.1

Table 10.2: Link element and text formatting ranges for good pages. The cluster models were used to derive
ranges for all of the measures, except page link count; the overall page quality model was used to derive the
range for this measure.

as the most link text clusters. The table shows that redundant links are used on good pages and
graphical links are not avoided as suggested above; it is possible that the graphical links have text
on them, which is not currently detected by the metrics tool. Given the ranges for redundant links
along with the ranges for text and graphical links, it appears that links are repeated in both text
and image formats. However, the measures do not reveal how often redundant links correspond to
those that are also graphical links.

Table 10.2 shows that good pages also contain from zero to �ve within-page links. The
means and standard deviations for each cluster suggest that within-page links are used infrequently
on pages in the small-page and formatted-page clusters; however, they appear to be used more so
on pages in the large-page cluster. Examining pages with many within-page links in this cluster
revealed that most were reference pages (e.g., FAQs) with numerous links to allow users to return
to the top portion of pages.

10.2.4 Use of Non-Animated and Animated Graphical Ads (Graphic Element)

The following guidance has been provided on the use of graphical ads and animation.

1. Ads a�ect the user experience; integrate ads with content [Klee and Schroeder 2000].

2. Usability dictates that ads should be eliminated [Nielsen 2000].

3. Ads increase credibility [Kim and Fogg 1999].

4. Minimize animated graphics [Flanders and Willis 1998].

5. Avoid using animation unless it is appropriate (e.g., showing transitions over time) [Nielsen
2000].

6. Animation is irritating to users; it impedes scanning [Spool et al. 1999].

Table 10.3 depicts ranges for animated graphical ads in the three clusters. Pages in each
cluster are likely to contain one or more graphical ads, although pages in the formatted-page cluster
typically contain the most graphical ads. Good pages tend to have zero or one animated graphical
ad, which suggests that no more than one graphical ad is animated on good pages. Thus, it appears
that animation is used sparingly.



247

Good Page Cluster Overall
Measure Small-Page Large-Page Formatted-Page Page

Graphic Ad Count 0.1{1.5 0.2{1.6 1.6{3.0
Animated Graphic Ad Count 0.0{1.4

Table 10.3: Graphical ad ranges for good pages. The cluster models were used to derive ranges for the
graphic ad count, while the overall page quality model was used to derive the range for the animated graphic
ad count.

10.2.5 Font Styles and Sizes (Text and Page Formatting)

Guidelines on the use of font styles (serif or sans serif) and ideal font sizes for text include
the following.

1. Use serif fonts for faster reading by older adults [Bernard et al. 2001].

2. Sans serif fonts have a slight advantage over serif fonts and are more preferred [Bernard and
Mills 2000; Schriver 1997].

3. Use only a few sizes from one or two typeface families; use one serif and one sans serif font
for contrast [Schriver 1997].

4. Use sans serif fonts for smaller text and serif fonts for larger text [Nielsen 2000].

5. Use 14 pt fonts for older adults [Bernard et al. 2001].

6. Use font sizes greater than 9 pt [Flanders and Willis 1998; Schriver 1997].

7. Use 10 to 11 pt (or higher) for body text and 14 pt (or higher) for display text; use larger
point sizes for serif faces [Schriver 1997].

Table 10.4 summarizes ranges for other key font style and size measures on good pages.
Based on the mean for the font style measure, sans serif is the predominant font style on good
pages. However, the serif font count shows that these pages may use one serif font as well. In fact,
the sans serif and serif font counts suggest that one serif font face and one sans serif font face is
used on good pages. These pages also use at least three font combinations (font count) { font face,
size, bolding, and italics { based on the font counts. The average font size used on pages in the
three clusters is 9 pt or greater, which is somewhat consistent with the guidelines above. The pages
also use a slightly smaller font size (minimum font size), typically for copyright or footer text.

Contrary to recommendations for using serif fonts for display text and sans serif fonts for
body text, sans serif fonts appear to be used for both on good pages. There are large correlations
between body and sans serif word counts as well as medium-strength correlations between display
and sans serif word counts. There are no large correlations between display and serif word counts,
suggesting that serif fonts may be used for something other than headings, such as form elements.
The measures do not capture whether larger font sizes are used with serif fonts and vice versa for
sans serif fonts.
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Good Page Cluster Overall
Measure Small-Page Large-Page Formatted-Page Page

Font Style Sans Serif
Font Count 3.6{5.8 5.7{7.9 5.8{8.0
Sans Serif Font Count 0.4{1.2
Serif Font Count 0.1{1.3
Average Font Size 10.2{11.3 10.4{11.5 9.6{10.8
Minimum Font Size 8.8{9.1 8.8{9.1 8.8{9.0

Table 10.4: Font style and size ranges for good pages. The cluster models were used to derive ranges for
half of the measures, and the overall page quality model was used to derive ranges for the other half. The
font style measure reects the predominant font face (serif, sans serif, or undetermined) used on a page.

10.2.6 Unique Colors and Color Combinations (Text, Link, and Page Format-
ting)

The literature o�ers the following guidance on the use of colors for text, links, and other
Web page elements.

1. Minimize the number of text colors [Flanders and Willis 1998].

2. Use link and visited link colors that are similar to default browser colors (e.g., shades of blue,
red, and purple) [Nielsen 2000].

3. Use default browser colors for links [Spool et al. 1999].

4. Use no more than 6 discriminable colors [Murch 1985].

5. Use browser-safe colors [Kaiser 1998].

6. Use color combinations determined to be good (i.e., high contrast) via user studies [Murch
1985].

7. Use high contrast between background and text [Flanders and Willis 1998; Nielsen 2000].

Table 10.5 summarizes ranges for various color measures. Good pages use from one to
three colors for body text (body color count). Similarly, all three of the good page clusters use
from one to three colors for display text (display color count); it appears that the number of display
colors is proportional to the amount of text or formatting on pages. Although it is not clear whether
di�erent colors are used for body and display text on these pages, color counts for the three clusters
suggest that this may be the case. Table 10.5 shows that the total number of colors used on good
pages range from �ve to twelve with two or three of these colors being used for links and another one
to three being used for body text; there is a gap between the total number of colors and the ranges
for link and body text colors suggesting that the remaining distinct colors are used for display text.
It seems that good pages may use up to six di�erent colors for text, which appears to contradict
the �rst heuristic for minimizing the number of text colors.

Table 10.5 shows that good pages use from two to four di�erent colors for links (link color
count). Furthermore, not all of these colors are standard link colors (standard link color count); the
measures do not assess whether colors similar to the standard link colors are used. These ranges
suggest that good pages do not closely follow the guidance in the literature on link colors.
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Good Page Cluster Overall
Measure Small-Page Large-Page Formatted-Page Page

Body Color Count 0.9{3.1
Display Color Count 0.7{1.6 1.3{2.2 1.7{2.6
Link Color Count 2.3{4.3
Standard Link Color Count 0.6{1.8 0.6{1.7 0.2{1.4
Color Count 5.4{8.1 6.5{9.2 9.7{12.5
Browser-Safe Color Count 3.5{6.6
Good Text Color 1.3{3.5 2.2{4.5 4.6{6.9
Combinations
Neutral Text Color 0.4{2.4
Combinations
Bad Text Color 0.0{1.1
Combinations
Good Panel Color 0.0{0.6 0.0{0.7 0.6{1.3
Combinations
Neutral Panel Color 0.0{1.2
Combinations
Bad Panel Color 0.0{1.2 0.3{1.6 1.5{2.8
Combinations

Table 10.5: Color and color combination ranges for good pages. The cluster models were used to derive
ranges for half of the measures, and the overall page quality model was used to derive ranges for the other
half.

Ranges for the total number of unique colors (color count) on pages in each cluster show
that good pages do not adhere to the guidance of using no more than six discriminable colors.
Furthermore, they do not strictly use browser-safe colors (browser-safe color count) as recommended
by the literature. Good pages tend to use good text color combinations more so than neutral and bad
text color combinations. However, they tend to use neutral and bad panel color combinations (i.e.,
thick lines or shaded areas) more so than good panel color combinations. Inspections of good pages
showed that oftentimes the panel color combinations are the reverse of text color combinations.
For example, the page background may be white and a blue navigation bar may be placed on top
of this white background, then white text is used on top of the blue navigation bar background.
Based on studies by Murch [1985], the white background with the blue navigation bar is considered
a neutral panel color combination, while the blue background with white text is considered a good
text color combination. This discrepancy suggests that panel color combinations may not be as
important as the text color combinations on pages, since they simply represent overlapping color
regions, such as a colored navigation bar placed on top of the page's background color.

10.2.7 Download Speed (Page Performance)

The time for a page to fully load is considered a critical issue for Web interfaces, and the
following guidance has been o�ered with respect to optimizing download speed.

1. Download speed should be no more than 10 seconds [Nielsen 2000].

2. Home pages greater than 40K result in signi�cant bailouts [Zona Research 1999].

3. Keep graphic bytes to less than 35K [Flanders and Willis 1998].
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Good Page Cluster Overall
Measure Small-Page Large-Page Formatted-Page Page

Download Time 12.1{20.7 11.9{20.5 10.2{18.8
HTML Bytes 4.8{14.3K 15.4{24.9K 20.6{30.1K
Graphic Bytes 4.4{59.0K
Script Bytes 248.0{1.7K 330.0{1.8K 1.1{2.5K

Table 10.6: Download speed and byte ranges for good pages. The cluster models were used to derive ranges
for all of the measures, except graphic bytes; the overall page quality model was used to derive the range for
this measure.

4. Keep the Web page and all elements under 34K [Nielsen 2000].

Table 10.6 suggests that the estimated time to download good pages is rarely under ten
seconds as suggested in the literature. However, the ranges are only a rough approximation of
download speed and do not take into consideration caching of elements for subsequent use in the
site. The download speed for good home pages (8.0{27.5 seconds) is most relevant (assuming users
enter sites through home pages) and shows that indeed the estimated download speed is rarely under
ten seconds; these estimates are based on a 41.2K connection speed1. The estimated download speed
on average home pages ranges from 8.7 to 30.1 seconds, while the estimated download speed on
poor home pages ranges from 7.2 to 27.4 seconds; this di�erence was not signi�cant.

The literature also suggests that home pages greater than 40K result in greater bailout
[Zona Research 1999]. HTML bytes on good home pages are from 11.8K to 33.3K, which is con-
sistent with the guidance in the literature. Table 10.6 shows that bytes on all pages are below this
recommended threshold. However, ranges for graphic bytes, HTML bytes, and script bytes in the
table suggest that pages do not adhere to the guidance of keeping graphic bytes and the total bytes
for all page elements below 34K. Script bytes are not reported since they are negligible for this data
set.

10.2.8 Accessibility and HTML Errors (Page Performance)

Analysis in Section 6.6.2 revealed that Bobby and Weblint errors are more prevalent
in good pages than average and poor pages despite the guidance that Web designers adhere to
accessibility principles [Clark and Dardailler 1999; Cooper 1999; Nielsen 2000; Web Accessibility
Initiative 1999] and avoid making HTML errors [Bowers 1996; Kim and Fogg 1999; Fogg et al.
2000]. Table 10.7 shows that pages in all clusters are typically not Bobby approved and contain
several accessibility errors. Both the accessibility and Weblint errors appear to be proportional to
the amount of formatting on pages; it was previously reported in Section 6.6.2 that these errors
are correlated with the use of tables and interactive elements. The presence of accessibility and
HTML coding errors on good pages is possibility attributable to the fact that HTML inherently
does not a�ord designing accessible and error-free pages. Another possibility is that the tools are
out of date.

1Section 5.12.4 showed that it is rarely possible to achieve a 56.6K connection speed with the 56.6K modem,
possibly due to the technical limitations of this analog modem. For 50 connection sessions to three di�erent Internet
service providers at various times of the day, the average and median connection speed was found to be 41.2K. Hence,
this connection speed is used by the download speed model.
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Good Page Cluster Overall
Measure Small-Page Large-Page Formatted-Page Page

Bobby Approved No No No
Bobby Priority 1 Errors 0.6{1.6 0.8{1.8 1.5{2.5
Bobby Priority 2 Errors 3.1{4.3 3.2{4.4 4.1{5.3
Bobby Priority 3 Errors 1.8{2.2
Weblint Errors 0.0{36.2 16.4{53.0 55.8{92.4

Table 10.7: Bobby and Weblint ranges for good pages. The cluster models were used to derive ranges for
all of the measures, except Bobby priority 3 errors; the overall page quality model was used to derive the
range for this measure. The Bobby approved measure reects whether a page was Bobby approved (yes or
no).

10.3 Site-Level Guidelines

The following section summarizes the comparison of thresholds derived from the overall
site quality model to Web design guidelines on the consistency of pages throughout a site.

10.3.1 Consistency Across Pages (Site Architecture)

The consistency of page layout and page titles in the site has been discussed extensively
in the literature, and the following guidance is provided.

1. Consistent layout of graphical interfaces result in a 10{25% speedup in performance [Mahajan
and Shneiderman 1997].

2. Use consistent navigational elements [Flanders and Willis 1998; Fleming 1998].

3. Use several layouts (e.g., one for each page type) for variation within the site [Sano 1996].

4. Consistent elements become invisible [Sawyer et al. 2000].

5. Use di�erent page titles for each page [Nielsen 2000].

Table 10.8 summarizes several consistency aspects of good sites. Recall that the variation
measures are the median coeÆcients of variation (100 * �

�x
, where � is the standard deviation, and

�x is the mean) computed across the measures within each category; larger variation suggests less
consistency and vice versa. The page formatting variation suggests that page layouts are very
consistent (no more than 22% variation) across pages on good sites; this is consistent with the �rst
heuristic, but contradicts the fourth heuristic. The link element and formatting variation measures
suggest that navigational elements are also fairly consistent across pages on good sites; this is
consistent with the second heuristic. Finally, the page title variation suggests that page titles vary
considerably on good sites, which supports the last heuristic above.

10.4 Summary

This chapter demonstrated the ability to apply the pro�les of highly-rated interfaces for
deriving guidelines based on empirical data and for validating existing guidelines. In many cases,
such as the number and type of links, graphical ads, use of animation, color usage, download speed,
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Measure Overall Site

Page Formatting Variation 0.0{22.2%
Link Element Variation 35.2{101.2%
Link Formatting Variation 0.0{43.2%
Page Title Variation 19.5{179.5%

Table 10.8: Consistency ranges for good sites. The overall site quality model was used to derive these
ranges.

and accessibility, the derived guidelines contradict heuristics from the literature. However, in some
cases, such as the length of link text and font styles, the derived guidelines support heuristics from
the literature. This approach can be used to develop empirically-derived guidelines for other Web
interface aspects discussed in Chapter 5.
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Chapter 11

Conclusions and Future Work

This dissertation makes several key contributions to the advancement of automated Web
interface evaluation, including the following.

� It summarizes the current state of automated evaluation methods for graphical and Web
interfaces and proposes ways to expand existing support.

� It describes how methods used for evaluating the performance of computer systems can be
applied towards the problem of automated interface evaluation.

� It presents a methodology and tools for automated evaluation of Web interfaces that is a
synthesis of approaches used in the usability and performance evaluation domains and based
on empirical data.

� It describes an extensive set of quantitative Web interface measures for assessing many aspects
discussed in the Web design literature.

� It describes the development of highly-accurate statistical models for assessing Web interface
quality.

� It documents the eÆcacy of the statistical models for improving Web interface quality and
for validating established Web design guidelines.

This dissertation presents the �rst research in which a large collection of expert-rated Web
sites was analyzed to develop statistical models to support automated evaluation of new sites. This
method represents a synthesis of approaches employed in the usability evaluation and performance
evaluation domains. It entails computing an extensive set of 157 highly-accurate, quantitative page-
level and site-level measures for sites that have been rated by Internet experts. These measures
in conjunction with the expert ratings are used to derive statistical models of highly-rated Web
interfaces. As is done with guideline review methods in the usability evaluation domain, the models
are then used in the automated analysis of Web pages and sites. However, unlike other guideline
review methods, the guidelines in this case are in essence derived from empirical data.

This dissertation shows that highly accurate models can be developed to assess Web page
and site quality while taking into consideration the context in which pages and sites are designed.
For example, models were developed to assess whether a page is a good home page or whether
a page is consistent with pages on good health sites; site-level models were developed to enable
similar assessments. A usability study suggests that the expert ratings used to derive the models
are somewhat consistent with usability ratings; however, concrete conclusions cannot be drawn
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from the study due to the time di�erence between expert and usability ratings. It was also shown
that the models could be used to guide the modi�cation of an example Web site, and another study
showed that participants rated the modi�ed version of this site slightly higher than the original
version, although the di�erence was not signi�cant. However, the study showed that for a larger set
of sites, participants preferred pages modi�ed based on the Web interface pro�les over the original
versions, and participants rated modi�ed sites higher than the original sites; the di�erences were
signi�cant in both cases. Thus, this dissertation shows the �rst steps towards using the models to
provide concrete Web design guidance.

Even though it was possible to �nd correlations between values for measures and expert
ratings, no claim is being made about the pro�les representing causal links. It is possible that the
highly-rated sites are highly rated for reasons other than what is assessed with the measures, such
as the quality of the content of the site. The current models and tools cannot improve on poor
content. However, the study of modi�ed sites provided preliminary evidence that they can provide
insight on how to take good content that is poorly presented and improve its presentation, thus
improving users' experience in accessing that content. And, because it is possible to empirically
�nd commonalities among the presentation elements of the highly-rated sites, this provides strong
evidence that the presentational aspects of highly-rated sites that di�er from those of poorly-rated
sites are in fact important for good design.

This dissertation represents an important �rst step towards enabling non-profes- sional
designers to iteratively improve the quality of their Web designs. The methodology and tools are
in their infancy and only provide support for re�ning an implemented site; thus, there are many
ways in which they can be improved. Ideally, predictive models would be developed based on
usability test results instead of expert ratings; however, a large e�ort needs to be launched within
the HCI community to secure a large sample of usability tested sites. Developing and deploying
models is very time and resource intensive; thus, automating some aspects of these activities would
be extremely helpful. Even after developing and deploying models, considerable work needs to be
done to fully understand and validate design principles gleaned from them.

The set of quantitative measures can also be expanded to measure other aspects discussed
in this dissertation, such as the reuse of Web interface elements across pages in a site. A major
limitation of the current set of measures is that they do not assess content quality. Future work will
explore using text analysis techniques to possibly derive other measures of content quality. Another
limitation of the measures is that they do not gauge accessibility for the disabled; it was shown
that the good Web pages tended not to be accessible as determined by the Bobby tool. Future
work will examine other ways to measure accessibility, for instance computing the nesting level of
tables. (Although tables may help sighted users scan pages, they may impede blind users.)

Image processing could be used to improve the accuracy of existing measures, to enable
the development of new ones, and to enable support for non-HTML pages and early design rep-
resentations. Supporting early design representations also requires adjustments to be made to the
pro�les, such as ignoring certain measures during analysis.

All of the developed tools need to be reimplemented as part of a robust, open source
browser, such as Mozilla or Opera; this will enable support for framesets, scripts, applets, and
other objects as well as real-time analysis. Real-time analysis is crucial for developing an interactive
evaluation tool to support iterative design and evaluation.

Other key components of the interactive evaluation tool include: recommending design
improvements based on model predictions; applying recommendations so users can preview the
changes; and showing comparable designs for exploration. Some of the model deviations are easy
to correct, such as removing or changing text formatting, using good color combinations, and resiz-
ing images; it is possible to automatically modify the HTML to incorporate these types of changes.
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Other changes, such as reducing vertical scrolling, adding text columns, improving readability, and
adding links are not as straightforward. More work needs to be done to better understand the
pro�les before interactive evaluation can be supported. For example, factor analysis or multidi-
mensional scaling techniques could be used to reduce the number of measures and to gain more
insight about relationships among measures. This would enable recommendations to be based on
combinations of measures versus individual measures.

A natural extension of this work is to enable pro�les to be developed to capture e�ective
design practices in other cultures. This would require support for non-English languages, mainly
using language-appropriate dictionaries and text analysis algorithms. This may also require changes
to the assessment of good color usage, since colors have speci�c meanings in some cultures.

Another extension of this work would be to develop a quality summary for Web pages and
sites. This summary would represent a quick overview or characterization (possibly in graphical
format) that could be used by search engines for ordering search results or possibly in visualizations
of clickstreams through sites. The summary for search engine ordering may consist of a single rating,
while the summary for the latter case may consist of a rating in addition to other details, such as
the predicted page type, the closest good page cluster, and download speed.

Another application of the corpus of Web pages and sites is to enable designers to explore
the collection to inform design. Ideally, characteristics of Web pages and sites could be represented
in a way that facilitates easily identifying pages and sites that satisfy some design criteria, such
as e�ective navigation schemes within health sites or good page layouts, color palettes, and site
maps. Task-based search techniques that exploit metadata [Elliott 2001; English et al. 2001; Hearst
2000] should be helpful; metadata for Web interfaces could consist of the quantitative measures
developed in this dissertation as well as others that describe for instance the size of the site, the
type of site, page size, a page's functional type, elements on a page (e.g., navigation bars), as well
as site ratings.

Another extension of this work is to use the pro�les to derive parameters for the Web
interface simulator proposed in this dissertation. Monte Carlo simulation was suggested as a way
to automate Web site evaluation by mimicking users' information-seeking behavior and estimating
navigation time, errors, etc. Similar to the guideline derivation, pro�les could be used to derive
simulation model parameters, such as thinking and reading times for pages. The cluster models
could be used to derive timing estimates for these activities based on the average number of links,
words, and other measures that reect page complexity. User studies would be conducted to validate
the baselines before incorporating them into the simulator.

This dissertation lays the foundation for a new approach to automated evaluation of
interfaces wherein the interfaces themselves are analyzed as data. Continuous, ongoing analysis of
interfaces will enable the models embedded in the approach to evolve and constantly reect the
current state of e�ective design. This approach is not intended to be used as a substitute for user
input. Automated methods do not capture important qualitative and subjective information that
can only be unveiled via usability testing and other inquiry methods. Furthermore, it is not the
case that the issues identi�ed by automated tools are true usability issues. Several studies, such as
the one conducted by Bailey et al. [1992], have contrasted expert reviews and usability testing and
found little overlap in �ndings between the two methods. Nonetheless, this approach should be a
useful complement to non-automated evaluation techniques.
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Appendix A

Automation Characteristics of UE

Methods, Chapter 2

The following sections discuss automation characteristics for WIMP and Web interfaces
separately. This information was aggregated and presented in Section 2.3.

A.1 Automation Characteristics of WIMP UE Methods

Tables A.1 and A.2 summarize automation characteristics for the 75 UE methods sur-
veyed for WIMP interfaces. Table A.3 provides descriptions of all method types, and Table A.4
summarizes the number of non-automated and automated capture, analysis, and critique methods
surveyed. Four software tools provide automation support for multiple method types: DRUM -
performance measurement and log �le analysis; AMME - log �le analysis and petri net modeling;
KALDI - performance measurement, log �le analysis, and remote testing; and UsAGE - performance
measurement and log �le analysis.
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Method Class Automation Type
Method Type None Capture Analysis Critique

Testing
Thinking-aloud Protocol F (1)
Question-asking Protocol F (1)
Shadowing Method F (1)
Coaching Method F (1)
Teaching Method F (1)
Co-discovery Learning F (1)
Performance Measurement F (1) F (4)
Log File Analysis IFM (10)�

Retrospective Testing F (1)
Remote Testing IF (2)

Inspection

Guideline Review IF (2) (3) M (5)y

Cognitive Walkthrough IF (2) F (1)
Pluralistic Walkthrough IF (1)
Heuristic Evaluation IF (1)
Perspective-based Inspection IF (1)
Feature Inspection IF (1)
Formal Usability Inspection F (1)
Consistency Inspection IF (1)
Standards Inspection IF (1)

Inquiry
Contextual Inquiry IF (1)
Field Observation IF (1)
Focus Groups IF (1)
Interviews IF (1)
Surveys IF (1)
Questionnaires IF (1) IF (2)
Self-reporting Logs IF (1)
Screen Snapshots IF (1)
User Feedback IF (1)

Table A.1: Automation support for 75 WIMP UE methods (Table 1 of 2). A number in parentheses
indicates the number of UE methods surveyed for a particular method type and automation type. The e�ort
level for each method is represented as: minimal (blank), formal (F), informal (I) and model (M). The * for
the IFM entry indicates that either formal or informal interface use is required. In addition, a model may
be used in the analysis. The y indicates that methods may or may not require a model.
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Method Class Automation Type
Method Type None Capture Analsis Critique

Analytical Modeling
GOMS Analysis M (4) M (2)
UIDE Analysis M (2)
Cognitive Task Analysis M (1)
Task-environment Analysis M (1)
Knowledge Analysis M (2)
Design Analysis M (2)
Programmable User Models M (1)

Simulation
Information Proc. Modeling M (8)
Petri Net Modeling FM (1)
Genetic Algorithm Modeling (1)

Table A.2: Automation support for 75 WIMP UE methods (Table 2 of 2). A number in parentheses
indicates the number of UE methods surveyed for a particular method type and automation type. The e�ort
level for each method is represented as: minimal (blank), formal (F), informal (I) and model (M).

A.2 Automation Characteristics of Web UE Methods

Table A.5 summarizes automation characteristics for the 58 UE methods surveyed for
Web interfaces. Table A.6 provides descriptions of all method types, and Table A.7 summarizes the
number of non-automated and automated capture, analysis, and critique methods surveyed. Three
software tools provide automation support for multiple method types: Dome Tree visualization -
log �le analysis and information scent modeling; WebVIP - performance measurement and remote
testing; and WebQuilt - performance measurement, remote testing, and log �le analysis.



276

Method Class
Method Type Description

Testing
Thinking-aloud Protocol user talks during test
Question-asking Protocol tester asks user questions
Shadowing Method expert explains user actions to tester
Coaching Method user can ask an expert questions
Teaching Method expert user teaches novice user
Co-discovery Learning two users collaborate
Performance Measurement tester or software records usage data during test
Log File Analysis tester analyzes usage data
Retrospective Testing tester reviews videotape with user
Remote Testing tester and user are not co-located during test

Inspection
Guideline Review expert checks guideline conformance
Cognitive Walkthrough expert simulates user's problem solving
Pluralistic Walkthrough multiple people conduct cognitive walkthrough
Heuristic Evaluation expert identi�es heuristic violations
Perspective-based Inspection expert conducts narrowly focused heuristic evaluation
Feature Inspection expert evaluates product features
Formal Usability Inspection experts conduct formal heuristic evaluation
Consistency Inspection expert checks consistency across products
Standards Inspection expert checks for standards compliance

Inquiry
Contextual Inquiry interviewer questions users in their environment
Field Observation interviewer observes system use in user's environment
Focus Groups multiple users participate in a discussion session
Interviews one user participates in a discussion session
Surveys interviewer asks user speci�c questions
Questionnaires user provides answers to speci�c questions
Self-reporting Logs user records UI operations
Screen Snapshots user captures UI screens
User Feedback user submits comments

Analytical Modeling
GOMS Analysis predict execution and learning time
UIDE Analysis conduct GOMS analysis within a UIDE
Cognitive Task Analysis predict usability problems
Task-environment Analysis assess mapping of user's goals into UI tasks
Knowledge Analysis predict learnability
Design Analysis assess design complexity
Programmable User Models write program that acts like a user

Simulation
Information Proc. Modeling mimic user interaction
Petri Net Modeling mimic user interaction from usage data
Genetic Algorithm Modeling mimic novice user interaction

Table A.3: Descriptions of the WIMP UE method types depicted in Table A.1.
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Methods Automation Type
Surveyed None Capture Analysis Critique

Total 30 5 8 1
Percent 68% 11% 18% 2%

Table A.4: Summary of WIMP UE methods surveyed for each automation type.

Method Class Automation Type
Method Type None Capture Analysis Critique

Testing
Thinking-aloud Protocol F (1)
Question-asking Protocol F (1)
Shadowing Method F (1)
Coaching Method F (1)
Teaching Method F (1)
Co-discovery Learning F (1)
Performance Measurement F (1) F (4)
Log File Analysis IFM (10)
Retrospective Testing F (1)
Remote Testing IF (3)

Inspection
Guideline Review IF (4) (5) (6)
Cognitive Walkthrough IF (2)
Pluralistic Walkthrough IF (1)
Heuristic Evaluation IF (1)
Perspective-based Inspection IF (1)
Feature Inspection IF (1)
Formal Usability Inspection F (1)
Consistency Inspection IF (1)
Standards Inspection IF (1)

Inquiry
Contextual Inquiry IF (1)
Field Observation IF (1)
Focus Groups IF (1)
Interviews IF (1)
Surveys IF (1)
Questionnaires IF (1) IF (1)
Self-reporting Logs IF (1)
Screen Snapshots IF (1)
User Feedback IF (1)

Analytical Modeling
No Methods Surveyed

Simulation
Information Proc. Modeling M (1)
Information Scent Modeling M (1)

Table A.5: Automation support for 58 Web UE methods. A number in parentheses indicates the number of
UE methods surveyed for a particular method type and automation type. The e�ort level for each method
is represented as: minimal (blank), formal (F), informal (I) and model (M).
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Method Class
Method Type Description

Testing
Thinking-aloud Protocol user talks during test
Question-asking Protocol tester asks user questions
Shadowing Method expert explains user actions to tester
Coaching Method user can ask an expert questions
Teaching Method expert user teaches novice user
Co-discovery Learning two users collaborate
Performance Measurement tester or software records usage data during test
Log File Analysis tester analyzes usage data
Retrospective Testing tester reviews videotape with user
Remote Testing tester and user are not co-located during test

Inspection
Guideline Review expert checks guideline conformance
Cognitive Walkthrough expert simulates user's problem solving
Pluralistic Walkthrough multiple people conduct cognitive walkthrough
Heuristic Evaluation expert identi�es heuristic violations
Perspective-based Inspection expert conducts narrowly focused heuristic evaluation
Feature Inspection expert evaluates product features
Formal Usability Inspection experts conduct formal heuristic evaluation
Consistency Inspection expert checks consistency across products
Standards Inspection expert checks for standards compliance

Inquiry
Contextual Inquiry interviewer questions users in their environment
Field Observation interviewer observes system use in user's environment
Focus Groups multiple users participate in a discussion session
Interviews one user participates in a discussion session
Surveys interviewer asks user speci�c questions
Questionnaires user provides answers to speci�c questions
Self-reporting Logs user records UI operations
Screen Snapshots user captures UI screens
User Feedback user submits comments

Analytical Modeling
No Methods Surveyed

Simulation
Information Proc. Modeling mimic user interaction
Information Scent Modeling mimic Web site navigation

Table A.6: Descriptions of the Web UE method types discussed in Table A.5.

Methods Automation Type
Surveyed None Capture Analysis Critique

Total 26 5 4 1
Percent 72% 14% 11% 3%

Table A.7: Summary of Web UE methods surveyed for each automation type.
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Appendix B

Label Creation Task, Chapter 3

Chapter 3 discusses a label creation task in Microsoft Word 97 and 2000. This section
presents the full 55-step label creation task as well as the correlation between this 55-step task
sequence and the high-level task presented in Chapter 3.

B.1 Complete Task Sequence

Figures B.1 and B.2 depict the complete task sequence for the label creation task.

B.2 High-Level Task Sequence

Figures B.3 and B.4 depict the correlation between this 55-step task sequence and the
high-level task presented in Chapter 3.
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1. Select Tools menu

2. Select Envelopes and Labels item

3. Click Options button

4. Select label size from list

5. Click OK button

6. Click New Document button

7. Type address in �rst label

8. Highlight address

9. Click Center button

10. Select Format menu

11. Select Borders and Shading item

12. Select Box setting

13. Click OK button

14. Click on right mouse button while over highlighted
text

15. Select Copy option

16. Move cursor to second label (top middle)

17. Click right mouse button

18. Select Paste option

19. Highlight address

20. Select Format menu

21. Select Borders and Shading item

22. Select Box setting

23. Click OK button

24. Move cursor to third label (top right)

25. Click right mouse button

26. Select Paste option

27. Highlight address

Figure B.1: Complete task sequence for creating address labels (six on a sheet with a square border around
each label) in Microsoft Word 97 and 2000 (Figure 1 of 2).
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28. Select Format menu

29. Select Borders and Shading item

30. Select Box setting

31. Click OK button

32. Move cursor to fourth label (bottom right)

33. Click right mouse button

34. Select Paste option

35. Highlight address

36. Select Format menu

37. Select Borders and Shading item

38. Select Box setting

39. Click OK button

40. Move cursor to �fth label (bottom middle)

41. Click right mouse button

42. Select Paste option

43. Highlight address

44. Select Format menu

45. Select Borders and Shading item

46. Select Box setting

47. Click OK button

48. Move cursor to sixth label (bottom left)

49. Click right mouse button

50. Select Paste option

51. Highlight address

52. Select Format menu

53. Select Borders and Shading item

54. Select Box setting

55. Click OK button

Figure B.2: Complete task sequence for creating address labels (six on a sheet with a square border around
each label) in Microsoft Word 97 and 2000 (Figure 2 of 2).
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1. Select Tools menu (1. Change document to label format)

2. Select Envelopes and Labels item

3. Click Options button

4. Select label size from list

5. Click OK button

6. Click New Document button

7. Type address in �rst label (2. Type address)

8. Highlight address (3. Center address)

9. Click Center button

10. Select Format menu (4. Add border)

11. Select Borders and Shading item

12. Select Box setting

13. Click OK button

14. Click on right mouse button while over highlighted text (5. Copy address)

15. Select Copy option

16. Move cursor to second label (top middle) (6. Move cursor to next label)

17. Click right mouse button (7. Paste address)

18. Select Paste option

19. Highlight address (8. Select address)

20. Select Format menu (9. Add border)

21. Select Borders and Shading item

22. Select Box setting

23. Click OK button

24. Move cursor to third label (top right) (10. Move cursor to next label)

25. Click right mouse button (11. Paste address)

26. Select Paste option

27. Highlight address (12. Select address)

Figure B.3: High-level task sequence for creating address labels (bold entries on the right, Figure 1 of 2).
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28. Select Format menu (13. Add border)

29. Select Borders and Shading item

30. Select Box setting

31. Click OK button

32. Move cursor to fourth label (bottom right) (14. Move cursor to next label)

33. Click right mouse button (15. Paste address)

34. Select Paste option

35. Highlight address (16. Select address)

36. Select Format menu (17. Add border)

37. Select Borders and Shading item

38. Select Box setting

39. Click OK button

40. Move cursor to �fth label (bottom middle) (18. Move cursor to next label)

41. Click right mouse button (19. Paste address)

42. Select Paste option

43. Highlight address (20. Select address)

44. Select Format menu (21. Add border)

45. Select Borders and Shading item

46. Select Box setting

47. Click OK button

48. Move cursor to sixth label (bottom left) (22. Move cursor to next label)

49. Click right mouse button (23. Paste address)

50. Select Paste option

51. Highlight address (24. Select address)

52. Select Format menu (25. Add border)

53. Select Borders and Shading item

54. Select Box setting

55. Click OK button

Figure B.4: High-level task sequence for creating address labels (bold entries on the right, Figure 2 of 2).
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Appendix C

Benchmarking Tools and Web

Interface Measures, Chapters 4 and 5

C.1 Benchmarking Tools

The Site Crawler, Metrics Computation, and Analysis Tools described in Chapter 4 are
available for online use via the WebTango Project Tools page
(http://webtango.berkeley.edu/tools/).

C.2 Web Interface Measures

An interactive appendix was developed to illustrate all of the Web interface measures dis-
cussed in Chapter 5. This appendix can be loaded from the CDROM accompanying this dissertation
(or from the Computer Science Division) by opening the �le appc/web/index.html in a Web browser
or appc/appc.ppt in Microsoft PowerPoint. The HTML version of the appendix is also available at
http://webtango.berkeley.edu/tools/metrics/web/index.html; the PowerPoint version is available
at http://webtango.berkeley.edu/tools/metrics/appc.ppt.

This appendix is best viewed in Microsoft PowerPoint because there is some strange
wrapping in the HTML version generated from PowerPoint.
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Appendix D

Comparison of Original and Modi�ed

Web Pages, Chapters 8 and 9

D.1 Web Pages from the Example Assessment

Chapter 8 summarized the assessment of an example health education site. It presented
images of three example pages from the site as well as images of the corresponding modi�ed pages.
Figure D.1 provides a side-by-side comparison of the original home, link, and content pages and
the pages modi�ed based on the pro�les developed in Chapter 6.

D.2 Web Pages from the Pro�le Evaluation Study

Chapter 9 described a study that focused on assessing whether pages and sites (including
the example site from Chapter 8) modi�ed based on the pro�les were preferred over the original
pages and sites. It presented images of example pages from �ve sites as well as images of the
corresponding modi�ed pages. Figures D.2 and D.3 provide side-by-side comparisons of the original
and modi�ed pages.
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Original Home Page Modi�ed Home Page

Original Link Page Modi�ed Link Page

Original Content Page Modi�ed Content Page

Figure D.1: Home (top), link (middle), and content (bottom) pages taken from the example health education
site discussed in Chapter 8. Many of the changes in the modi�ed pages are not visible. These include a set
of text links at the bottom of the page that mirror the graphical links, removal of colored and italicized body
text words, and addition of an accent color.
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Original Example Page (Site 1) Modi�ed Example Page (Site 1)

Original Example Page (Site 2) Modi�ed Example Page (Site 2)

Original Example Page (Site 3) Modi�ed Example Page (Site 3)

Figure D.2: Example pages from study sites 1 (top), 2 (middle), and 3 (bottom). Some of the changes in
the modi�ed pages are not visible.
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Original Example Page (Site 4) Modi�ed Example Page (Site 4)

Original Example Page (Site 5) Modi�ed Example Page (Site 5)

Figure D.3: Example pages from study sites 4 (top) and 5 (bottom). Some of the changes in the modi�ed
pages are not visible.


