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Usability evaluation is an increasingly important part of the user interface design
process. However, usability evaluation can be expensive in terms of time and human
resources, and automation is therefore a promising way to augment existing
approaches. This article presents an extensive survey of usability evaluation methods,
organized according to a new taxonomy that emphasizes the role of automation. The
survey analyzes existing techniques, identifies which aspects of usability evaluation
automation are likely to be of use in future research, and suggests new ways to expand
existing approaches to better support usability evaluation.
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1. INTRODUCTION

Usability is the extent to which a computer
system enables users, in a given context
of use, to achieve specified goals effec-
tively and efficiently while promoting feel-
ings of satisfaction.1 Usability evaluation
(UE) consists of methodologies for mea-
suring the usability aspects of a system’s
user interface (UI) and identifying specific
problems [Dix et al. 1998; Nielsen 1993].

1 Adapted from ISO9241 [International Standards
Organization 1999].
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Usability evaluation is an important part
of the overall user interface design pro-
cess, which consists of iterative cycles
of designing, prototyping, and evaluating
[Dix et al. 1998; Nielsen 1993]. Usability
evaluation is itself a process that entails
many activities depending on the method
employed. Common activities include.

—Capture collecting usability data, such
as task completion time, errors, guide-
line violations, and subjective ratings;

—Analysis interpreting usability data to
identify usability problems in the inter-
face; and
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—Critique: suggesting solutions or im-
provements to mitigate problems.

A wide range of usability evaluation
techniques have been proposed, and a sub-
set of these is currently in common use.
Some evaluation techniques, such as for-
mal user testing, can only be applied af-
ter the interface design or prototype has
been implemented. Others, such as heuris-
tic evaluation, can be applied in the early
stages of design. Each technique has its
own requirements, and generally differ-
ent techniques uncover different usability
problems.

Usability findings can vary widely when
different evaluators study the same user
interface, even if they use the same eval-
uation technique [Jeffries et al. 1991;
Molich et al. 1998, 1999; Nielsen 1993].
Two studies in particular, the first and
second comparative user testing studies
(CUE-1 [Molich et al. 1998] and CUE-2
[Molich et al. 1999]), demonstrated less
than a 1% overlap in findings among four
and eight independent usability testing
teams for evaluations of two user inter-
faces. This result implies a lack of sys-
tematicity or predictability in the findings
of usability evaluations. Furthermore, us-
ability evaluation typically only covers a
subset of the possible actions users might
take. For these reasons, usability experts
often recommend using several different
evaluation techniques [Dix et al. 1998;
Nielsen 1993].

How can systematicity of results and
fuller coverage in usability assessment be
achieved? One solution is to increase the
number of usability teams evaluating the
system and to increase the number of
study participants. An alternative is to au-
tomate some aspects of usability evalua-
tion, such as the capture, analysis, or cri-
tique activities.

Automation of usability evaluation has
several potential advantages over nonau-
tomated evaluation, such as the following.

—Reducing the cost of usability evalua-
tion. Methods that automate capture,
analysis, or critique activities can de-
crease the time spent on usability eval-
uation and consequently the cost. For

example, software tools that automati-
cally log events during usability testing
eliminate the need for manual logging,
which can typically take up a substan-
tial portion of evaluation time.

—Increasing consistency of the errors
uncovered. In some cases it is possible
to develop models of task completion
within an interface, and software tools
can consistently detect deviations from
these models. It is also possible to
detect usage patterns that suggest
possible errors, such as immediate task
cancellation.

—Predicting time and error costs across
an entire design. As previously dis-
cussed, it is not always possible to
assess every single aspect of an inter-
face using nonautomated evaluation.
Software tools, such as analytical
models, make it possible to widen the
coverage of evaluated features.

—Reducing the need for evaluation ex-
pertise among individual evaluators.
Automating some aspects of evaluation,
such as the analysis or critique activi-
ties, could aid designers who do not have
expertise in those aspects of evaluation.

—Increasing the coverage of evaluated
features. Due to time, cost, and resource
constraints, it is not always possible
to assess every single aspect of an
interface. Software tools that generate
plausible usage traces make it possible
to evaluate aspects of interfaces that
may not otherwise be assessed.

—Enabling comparisons between alter-
native designs. Because of time, cost,
and resource constraints, usability
evaluations typically assess only one
design or a small subset of features
from multiple designs. Some auto-
mated analysis approaches, such as
analytical modeling and simulation,
enable designers to compare predicted
performance for alternative designs.

—Incorporating evaluation within the
design phase of UI development, as
opposed to being applied after imple-
mentation. This is important because
evaluation with most nonautomated
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methods can typically be done only after
the interface or prototype has been built
and changes are more costly [Nielsen
1993]. Modeling and simulation tools
make it possible to explore UI designs
earlier.

It is important to note that we consider
automation to be a useful complement
and addition to standard evaluation tech-
niques such as heuristic evaluation and
usability testing—not a substitute. Differ-
ent techniques uncover different kinds of
problems, and subjective measures such
as user satisfaction are unlikely to be pre-
dictable by automated methods.

Despite the potential advantages, the
space of usability evaluation automation
is quite underexplored. In this article, we
discuss the state of the art in usability
evaluation automation, and highlight the
approaches that merit further investiga-
tion. Section 2 presents a taxonomy for
classifying UE automation, and Section 3
summarizes the application of this tax-
onomy to 132 usability methods. Sections
4 through 8 describe these methods in
more detail, including our summative as-
sessments of automation techniques. The
results of this survey suggest promising
ways to expand existing approaches to
better support usability evaluation.

2. TAXONOMY OF USABILITY EVALUATION
AUTOMATION

In this discussion, we make a distinction
between WIMP (windows, icons, pointer,
and mouse) interfaces and Web interfaces,
in part because the nature of these inter-
faces differs and in part because the us-
ability methods discussed have often only
been applied to one type or the other in
the literature. WIMP interfaces tend to be
more functionally oriented than Web in-
terfaces. In WIMP interfaces, users com-
plete tasks, such as opening or saving a
file, by following specific sequences of oper-
ations. Although there are some functional
Web applications, most Web interfaces
offer limited functionality (i.e., selecting
links or completing forms), but the pri-

mary role of many Web sites is to provide
information. Of course, the two types of
interfaces share many characteristics; we
highlight their differences when relevant
to usability evaluation.

Several surveys of UE methods for
WIMP interfaces exist; Hom [1998] and
Human Factors Engineering [1999] pro-
vide a detailed discussion of inspection, in-
quiry, and testing methods (these terms
are defined below). Several taxonomies
of UE methods have also been pro-
posed. The most commonly used taxon-
omy is one that distinguishes between
predictive (e.g., GOMS analysis and cog-
nitive walkthrough, also defined below)
and experimental (e.g., usability test-
ing) techniques [Coutaz 1995]. Whitefield
et al. [1991] present another classification
scheme based on the presence or absence
of a user and a computer. Neither of these
taxonomies reflects the automated aspects
of UE methods.

The sole existing survey of usability
evaluation automation, by Balbo [1995],
uses a taxonomy that distinguishes among
four approaches to automation:

—Nonautomatic: methods “performed by
human factors specialists”;

—Automatic Capture: methods that “rely
on software facilities to record relevant
information about the user and the sys-
tem, such as visual data, speech acts,
keyboard and mouse actions”;

—Automatic Analysis: methods that are
“able to identify usability problems au-
tomatically”; and

—Automatic Critic: methods that “not
only point out difficulties but propose
improvements.”

Balbo uses these categories to classify
13 common and uncommon UE methods.
However, most of the methods surveyed
require extensive human effort, because
they rely on formal usability testing
and/or require extensive evaluator inter-
action. For example, Balbo classifies sev-
eral techniques for processing log files as
automatic analysis methods despite the
fact that these approaches require formal
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testing or informal use to generate those
log files. What Balbo calls an automatic
critic method may require the evaluator to
create a complex UI model as input. Thus
this classification scheme is somewhat
misleading since it ignores the nonauto-
mated requirements of the UE methods.

2.1. Proposed Taxonomy

To facilitate our discussion of the state
of automation in usability evaluation, we
have grouped UE methods along the fol-
lowing four dimensions.

—Method Class: describes the type of eval-
uation conducted at a high level (e.g.,
usability testing or simulation);

—Method Type: describes how the evalua-
tion is conducted within a method class,
such as thinking-aloud protocol (usabil-
ity testing class) or information proces-
sor modeling (simulation class);

—Automation Type: describes the evalua-
tion aspect that is automated (e.g., cap-
ture, analysis, or critique); and

—Effort Level: describes the type of ef-
fort required to execute the method (e.g.,
model development or interface usage).

2.1.1. Method Class. We classify UE
methods into five method classes as
follows.

—Testing: an evaluator observes users in-
teracting with an interface (i.e., com-
pleting tasks) to determine usability
problems.

—Inspection: an evaluator uses a set of cri-
teria or heuristics to identify potential
usability problems in an interface.

—Inquiry: users provide feedback on an
interface via interviews, surveys, and
the like.

— Analytical Modeling: an evaluator em-
ploys user and interface models to gen-
erate usability predictions.

—Simulation: an evaluator employs user
and interface models to mimic a user in-
teracting with an interface and report
the results of this interaction (e.g., sim-

ulated activities, errors, and other quan-
titative measures).

UE methods in the testing, inspection,
and inquiry classes are appropriate for
formative (i.e., identifying specific usabil-
ity problems) and summative (i.e., obtain-
ing general assessments of usability) pur-
poses. Analytical modeling and simulation
are engineering approaches to UE that en-
able evaluators to predict usability with
user and interface models. Software engi-
neering practices have had a major influ-
ence on the first three classes, whereas the
latter two, analytical modeling and sim-
ulation, are quite similar to performance
evaluation techniques used to analyze the
performance of computer systems [Ivory
2001; Jain 1991].

2.1.2. Method Type. There is a wide range
of evaluation methods within the testing,
inspection, inquiry, analytical modeling,
and simulation classes. Rather than dis-
cuss each method individually, we group
related methods into method types; this
type typically describes how evaluation is
performed. We present method types in
Sections 4 through 8.

2.1.3. Automation Type. We adapted
Balbo’s automation taxonomy (described
above) to specify which aspect of a usabil-
ity evaluation method is automated.

—None: no level of automation supported
(i.e., evaluator performs all aspects of
the evaluation method);

—Capture: software automatically re-
cords usability data (e.g., logging inter-
face usage);

—Analysis: software automatically identi-
fies potential usability problems; and

—Critique: software automates analysis
and suggests improvements.

2.1.4. Effort Level. We also expanded
Balbo’s automation taxonomy to include
consideration of a method’s nonauto-
mated requirements. We augment each
UE method with an attribute called effort
level; this indicates the human effort re-
quired for method execution.
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Fig. 1 . Summary of our taxonomy for classifying usability evaluation methods. The
right side of the figure demonstrates the taxonomy with two evaluation methods dis-
cussed in later sections.

—Minimal Effort: does not require inter-
face usage or modeling.

—Model Development: requires the eval-
uator to develop a UI model and/or
a user model in order to employ the
method.

—Informal Use: requires completion of
freely chosen tasks (i.e., unconstrained
use by a user or evaluator).

—Formal Use: requires completion of spe-
cially selected tasks (i.e., constrained
use by a user or evaluator).

These levels are not necessarily ordered
by the amount of effort required, since this
depends on the method employed.

2.1.5. Summary. Figure 1 provides a syn-
opsis of our taxonomy and demonstrates
it with two evaluation methods. The tax-
onomy consists of: a method class (test-
ing, inspection, inquiry, analytical model-
ing, and simulation); a method type (e.g.,
log file analysis, guideline review, and
surveys); an automation type (none, cap-
ture, analysis, and critique); and an effort
level (minimal, model, informal, and for-

mal). In the remainder of this article, we
use this taxonomy to analyze evaluation
methods.

3. OVERVIEW OF USABILITY EVALUATION
METHODS

We surveyed 75 UE methods applied to
WIMP interfaces, and 57 methods applied
to Web UIs. Of these 132 methods, only
29 apply to both Web and WIMP UIs.
We determined the applicability of each
method based on the types of interfaces
a method was used to evaluate in the
literature and our judgment of whether
the method could be used with other
types of interfaces. Table I combines sur-
vey results for both types of interfaces
showing method classes (bold entries
in the first column) and method types
within each class (entries that are not
bold in the first column). Each entry in
Columns 2 through 5 depicts specific
UE methods along with the automation
support available and the effort required
to employ automation. For some UE meth-
ods, we discuss more than one approach;
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Table I. Automation Support for WIMP and Web UE Methodsa

Method Class Automation Type
Method Type None Capture Analysis Critique

Testing
Thinking-Aloud Protocol F (1)
Question-Asking Protocol F (1)
Shadowing Method F (1)
Coaching Method F (1)
Teaching Method F (1)
Codiscovery Learning F (1)
Performance Measurement F (1) F (7)
Log File Analysis IFM (19)∗
Retrospective Testing F (1)
Remote Testing IF (3)

Inspection
Guideline Review IF (6) (8) M (11)†
Cognitive Walkthrough IF (2) F (1)
Pluralistic Walkthrough IF (1)
Heuristic Evaluation IF (1)
Perspective-Based Inspection IF (1)
Feature Inspection IF (1)
Formal Usability Inspection F (1)
Consistency Inspection IF (1)
Standards Inspection IF (1)

Inquiry
Contextual Inquiry IF (1)
Field Observation IF (1)
Focus Groups IF (1)
Interviews IF (1)
Surveys IF (1)
Questionnaires IF (1) IF (2)
Self-Reporting Logs IF (1)
Screen Snapshots IF (1)
User Feedback IF (1)

Analytical Modeling
GOMS Analysis M (4) M (2)
UIDE Analysis M (2)
Cognitive Task Analysis M (1)
Task-Environment Analysis M (1)
Knowledge Analysis M (2)
Design Analysis M (2)
Programmable User Models M (1)

Simulation
Information Proc. Modeling M (9)
Petri Net Modeling FM (1)
Genetic Algorithm Modeling (1)
Information Scent Modeling M (1)

Automation Type
Total 30 6 8 1
Percent 67% 13% 18% 2%

aA number in parentheses indicates the number of UE methods surveyed for a
particular method type and automation type. The effort level for each method is
represented as: minimal (blank), formal (F), informal (I), and model (M).
∗Indicates that either formal or informal interface use is required. In addition, a
model may be used in the analysis.
†Indicates that methods may or may not employ a model.

hence, we show the number of meth-
ods surveyed in parentheses beside the
effort level. Some approaches provide
automation support for multiple method
types (see Appendix A). Table I contains
110 methods because some methods are
applicable to multiple method types;
we also only depict methods applicable

to both WIMP and Web UIs once. Table II
provides descriptions of all method types.

There are major differences in au-
tomation support among the five method
classes. Overall, automation patterns are
similar for WIMP and Web interfaces,
with the exception that analytical model-
ing and simulation are far less explored
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Table II. Descriptions of the WIMP and Web UE Method Types Depicted in Table I

Method Class
Method Type Description

Testing
Thinking-Aloud Protocol user talks during test
Question-Asking Protocol tester asks user questions
Shadowing Method expert explains user actions to tester
Coaching Method user can ask an expert questions
Teaching Method expert user teaches novice user
Codiscovery Learning two users collaborate
Performance Measurement tester records usage data during test
Log File Analysis tester analyzes usage data
Retrospective Testing tester reviews videotape with user
Remote Testing tester and user are not colocated during test

Inspection
Guideline Review expert checks guideline conformance
Cognitive Walkthrough expert simulates user’s problem solving
Pluralistic Walkthrough multiple people conduct cognitive walkthrough
Heuristic Evaluation expert identifies violations of heuristics
Perspective-Based Inspection expert conducts narrowly focused heuristic evaluation
Feature Inspection expert evaluates product features
Formal Usability Inspection expert conducts formal heuristic evaluation
Consistency Inspection expert checks consistency across products
Standards Inspection expert checks for standards compliance

Inquiry
Contextual Inquiry interviewer questions users in their environment
Field Observation interviewer observes system use in user’s environment
Focus Groups multiple users participate in a discussion session
Interviews one user participates in a discussion session
Surveys interviewer asks user specific questions
Questionnaires user provides answers to specific questions
Self-Reporting Logs user records UI operations
Screen Snapshots user captures UI screens
User Feedback user submits comments

Analytical Modeling
GOMS Analysis predict execution and learning time
UIDE Analysis conduct GOMS analysis within a UIDE
Cognitive Task Analysis predict usability problems
Task-Environment Analysis assess mapping of user’s goals into UI tasks
Knowledge Analysis predict learnability
Design Analysis assess design complexity
Programmable User Models write program that acts like a user

Simulation
Information Proc. Modeling mimic user interaction
Petri Net Modeling mimic user interaction from usage data
Genetic Algorithm Modeling mimic novice user interaction
Information Scent Modeling mimic Web site navigation

in the Web domain than for WIMP inter-
faces (2 vs. 16 methods). Appendix A shows
the information in Table I separated by UI
type.

Table I shows that automation in gen-
eral is greatly underexplored. Methods
without automation support represent
67% of the methods surveyed, and meth-
ods with automation support collectively
represent only 33%. Of this 33%, capture
methods represent 13%, analysis methods
represent 18%, and critique methods rep-
resent 2%. All but two of the capture meth-
ods require some level of interface usage;
genetic algorithms and information scent

modeling both employ simulation to gen-
erate usage data for subsequent analysis.
Overall, only 29% of all of the methods sur-
veyed (nonautomated and automated) do
not require formal or informal interface
use to employ.

To provide the fullest automation sup-
port, software would have to critique in-
terfaces without requiring formal or in-
formal use. Our survey found that this
level of automation has been developed
for only one method type: guideline re-
view (e.g., Farenc and Palanque [1999],
Lowgren and Nordvist [1992], and Scholtz
and Laskowski [1998]). Guideline review
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methods automatically detect and report
usability violations and then make sug-
gestions for fixing them (discussed further
in Section 5).

Of those methods that support the next
level of automation—analysis—Table I
shows that analytical modeling and sim-
ulation methods represent the majority.
Most of these methods do not require for-
mal or informal interface use.

The next sections discuss the various
UE methods and their automation in more
detail. Some methods are applicable to
both WIMP and Web interfaces; however,
we make distinctions where necessary
about a method’s applicability. Our discus-
sion also includes our assessments of auto-
mated capture, analysis, and critique tech-
niques using the criteria:

—Effectiveness: how well a method discov-
ers usability problems,

—Ease of use: how easy a method is to em-
ploy,

—Ease of learning: how easy a method is
to learn, and

—Applicability: how widely applicable a
method is to WIMP and/or Web UIs
other than to those originally applied.

We highlight the effectiveness, ease of use,
ease of learning, and applicability of auto-
mated methods in our discussion of each
method class. Ivory [2001] provides a de-
tailed discussion of all nonautomated and
automated evaluation methods surveyed.

4. AUTOMATING USABILITY TESTING
METHODS

Usability testing with real participants
is a fundamental usability evaluation
method [Nielsen 1993; Shneiderman
1998]. It provides an evaluator with
direct information about how people use
computers and what some of the problems
are with the interface being tested. Dur-
ing usability testing, participants use the
system or a prototype to complete a pre-
determined set of tasks while the tester
records the results of the participants’
work. The tester then uses these results to
determine how well the interface supports

users’ task completion as well as other
measures, such as number of errors and
task completion time.

Automation has been used predomi-
nantly in two ways within usability
testing: automated capture of use data
and automated analysis of these data
according to some metrics or a model
(referred to as log file analysis in Table I).
In rare cases methods support both auto-
mated capture and analysis of usage data
[Al-Qaimari and McRostie 1999; Uehling
and Wolf 1995].

4.1. Automating Usability Testing Methods:
Capture Support

Many usability testing methods require
the recording of the actions a user makes
while exercising an interface. This can be
done by an evaluator taking notes while
the participant uses the system, either
live or by repeatedly viewing a videotape
of the session: both are time-consuming
activities. As an alternative, automated
capture techniques can log user activity
automatically. An important distinction
can be made between information that is
easy to record but difficult to interpret
(e.g., keystrokes) and information that
is meaningful but difficult to automati-
cally label, such as task completion. Au-
tomated capture approaches vary with re-
spect to the granularity of information
captured.

Within the usability testing class of
UE, automated capture of usage data is
supported by two method types: perfor-
mance measurement and remote testing.
Both require the instrumentation of a
user interface, incorporation into a user
interface management system (UIMS), or
capture at the system level. A UIMS is a
software library that provides high-level
abstractions for specifying portable and
consistent interface models that are then
compiled into UI implementations [Olsen,
Jr. 1992]. Table III provides a synopsis of
automated capture methods discussed in
the remainder of this section. We discuss
support available for WIMP and Web UIs
separately.
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Table III. Synopsis of Automated Capture Support for Usability Testing Methodsa

Method Class: Usability Testing
Automation Type: Capture
Method Type: Performance Measurement—record usage data during test (7 methods)
UE Method UI Effort
Log low-level events (Hammontree et al. [1992]) WIMP F
Log UIMS events (UsAGE, IDCAT) WIMP F
Log system-level events (KALDI) WIMP F
Log Web server requests (Scholtz and Laskowski [1998]) Web F
Log client-side activities (WebVIP, WET) Web F
Method Type: Remote Testing—tester and user are not colocated (3 methods)
UE Method UI Effort
Employ same-time different-place testing (KALDI) WIMP, Web IF
Employ different-time different-place testing (journaled sessions) WIMP, Web IF
Analyze a Web site’s information organization (WebCAT) Web IF

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

4.1.1. Automating Usability Testing Methods:
Capture Support—WIMP UIs. Performance
measurement methods record usage
data (e.g., a log of events and times
when events occurred) during a usability
test. Video recording and event logging
tools [Al-Qaimari and McRostie 1999;
Hammontree et al. 1992; Uehling and
Wolf 1995] are available to automatically
and accurately align timing data with user
interface events. Some event logging tools
(e.g., Hammontree et al. [1992]) record
events at the keystroke or system level.
Recording data at this level produces vo-
luminous log files and makes it difficult to
map recorded usage into high-level tasks.

As an alternative, two systems log
events within a UIMS. UsAGE (user
action graphing effort)2 [Uehling and
Wolf 1995] enables the evaluator to
replay logged events, meaning it can
replicate logged events during playback.
This requires that the same study data
(databases, documents) be available dur-
ing playback as were used during the us-
ability test. IDCAT (integrated data cap-
ture and analysis tool) [Hammontree et al.
1992] logs events and automatically fil-
ters and classifies them into meaning-
ful actions. This system requires a video
recorder to synchronize taped footage with
logged events. KALDI (keyboard/mouse
action logger and display instrument)

2 This method is not to be confused with the UsAGE
analytical modeling approach discussed in Section 7.

[Al-Qaimari and McRostie 1999] supports
event logging and screen capturing via
Java and does not require special equip-
ment. Both KALDI and UsAGE also sup-
port log file analysis (see Section 4.2).

Remote testing methods enable testing
between a tester and participant who are
not colocated. In this case the evaluator is
not able to observe the participant directly,
but can gather data about the process
over a computer network. Remote testing
methods are distinguished according to
whether a tester observes the participant
during testing. Same-time different-place
and different-time different-place are two
major remote testing approaches [Hartson
et al. 1996].

In same-time different-place or remote-
control testing the tester observes the par-
ticipant’s screen through network trans-
missions (e.g., using PC Anywhere or
Timbuktu) and may be able to hear what
the participant says via a speaker tele-
phone or a microphone affixed to the com-
puter. Software makes it possible for the
tester to interact with the participant dur-
ing the test, which is essential for tech-
niques such as the question-asking or
thinking-aloud protocols that require such
interaction.

The tester does not observe the par-
ticipant during different-time different-
place testing. An example of this approach
is the journaled session [Nielsen 1993],
in which software guides the participant
through a testing session and logs the
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results. Evaluators can use this approach
with prototypes to get feedback early in
the design process, as well as with re-
leased products. In the early stages, eval-
uators distribute disks containing a proto-
type of a software product and embedded
code for recording users’ actions. Users ex-
periment with the prototype and return
the disks to evaluators upon completion.
It is also possible to embed dialog boxes
within the prototype in order to record
user comments or observations during us-
age. For released products, evaluators use
this method to capture statistics about the
frequency with which the user has used a
feature or the occurrence of events of in-
terest (e.g., error messages). This informa-
tion is valuable for optimizing frequently
used features and the overall usability of
future releases.

Remote testing approaches allow for
wider testing than traditional methods,
but evaluators may experience techni-
cal difficulties with hardware and/or soft-
ware components (e.g., inability to cor-
rectly configure monitoring software or
network failures). This can be especially
problematic for same-time different-place
testing where the tester needs to ob-
serve the participant during testing. Most
techniques also have restrictions on the
types of UIs to which they can be ap-
plied. This is mainly determined by the
underlying hardware (e.g., PC Anywhere
only operates on PC platforms) [Hartson
et al. 1996]. KALDI, mentioned above,
also supports remote testing. Since it was
developed in Java, evaluators can use
it for same- and different-time testing
of Java applications on a wide range of
computing platforms.

4.1.2. Automating Usability Testing Methods:
Capture Support—Web UIs. The Web enables
remote testing and performance mea-
surement on a much larger scale than
is feasible with WIMP interfaces. Both
same-time different-place and different-
time different-place approaches can be
employed for remote testing of Web UIs.
Similar to journaled sessions, Web servers
maintain usage logs and automatically
generate a log file entry for each request.

These entries include the IP address of
the requester, request time, name of the
requested Web page, and in some cases
the URL of the referring page (i.e., from
where the user came). Server logs can-
not record user interactions that occur
only on the client side (e.g., use of within-
page anchor links or back button), and
the validity of server log data is ques-
tionable due to caching by proxy servers
and browsers [Etgen and Cantor 1999;
Scholtz and Laskowski 1998]. Server logs
may not reflect usability, especially since
these logs are often difficult to interpret
[Schwartz 2000] and users’ tasks may not
be discernible [Byrne et al. 1999; Schwartz
2000].

Client-side logs capture more accurate,
comprehensive usage data than server-
side logs because they allow all browser
events to be recorded. Such logging may
provide more insight about usability. On
the downside, it requires every Web page
to be modified to log usage data, or else
use of an instrumented browser or special
proxy server.

The NIST WebMetrics tool suite
[Scholtz and Laskowski 1998] captures
client-side usage data. This suite includes
WebVIP (web visual instrumentor pro-
gram), a visual tool that enables the eval-
uator to add event handling code to Web
pages. This code automatically records the
page identifier and a time- stamp in an
ASCII file every time a user selects a link.
(This package also includes a visualization
tool, VISVIP [Cugini and Scholtz 1999], for
viewing logs collected with WebVIP; see
Section 4.2.) Using these client-side data,
the evaluator can accurately measure
time spent on tasks or particular pages as
well as study use of the back button and
user clickstreams. Despite its advantages
over server-side logging, WebVIP requires
the evaluator to make a copy of an entire
Web site, which could lead to invalid
path specifications and other difficulties
with getting the copied site to function
properly. The evaluator must also add
logging code to each individual link on a
page. Since WebVIP only collects data on
selected HTML links, it does not record
interactions with other Web objects, such
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as forms. It also does not record usage of
external or noninstrumented links.

Similar to WebVIP, the Web event-
logging tool (WET) [Etgen and Cantor
1999] supports the capture of client-
side data, including clicks on Web ob-
jects, window resizing, typing in a form
object, and form resetting. WET inter-
acts with Microsoft Internet Explorer and
Netscape Navigator to record browser
event information, including the type of
event, a timestamp, and the document-
window location. This gives the evaluator
a more complete view of the user’s inter-
action with a Web interface than WebVIP.
WET does not require as much effort
to employ as WebVIP, nor does it suffer
from the same limitations. To use this
tool, the evaluator specifies events (e.g.,
clicks, changes, loads, and mouseovers)
and event-handling functions in a text file
on the Web server; sample files are avail-
able to simplify this step. The evaluator
must also add a single call to the text file
within the<head> tag of each Web page to
be logged. Currently, the log file analysis
for both WebVIP and WET is manual. Fu-
ture work has been proposed to automate
this analysis.

The NIST WebMetrics tool suite also in-
cludes WebCAT (category analysis tool), a
tool that aids in Web site category anal-
ysis, by a technique sometimes known as
card sorting [Nielsen 1993]. In nonauto-
mated card sorting, the evaluator (or a
team of evaluators) writes concepts on
pieces of paper, and users group the top-
ics into piles. The evaluator manually an-
alyzes these groupings to determine a good
category structure. WebCAT allows the
evaluator to test proposed topic categories
for a site via a category matching task
(a variation of card sorting where users
assign concepts to predefined categories);
this task can be completed remotely by
users. Results are compared to the de-
signer’s category structure, and the eval-
uator can use the analysis to inform the
best information organization for a site.
WebCAT enables wider testing and faster
analysis than traditional card sorting, and
helps make the technique scale for a large
number of topic categories.

4.1.3. Automating Usability Testing Methods:
Capture Support—Discussion. Automated
capture methods represent important first
steps toward informing UI improvements:
they provide input data for analysis and
in the case of remote testing, enable
the evaluator to collect data for a larger
number of users than traditional meth-
ods. Without this automation, evaluators
would have to manually record usage
data, expend considerable time reviewing
videotaped testing sessions or, in the case
of the Web, rely on questionable server
logs. Methods such as KALDI and WET
capture high-level events that correspond
to specific tasks or UI features. KALDI
also supports automated analysis of
captured data, discussed below.

Table III summarizes performance
measurement and remote testing meth-
ods discussed in this section. It is difficult
to assess the ease of use and learning of
these approaches, especially IDCAT and
remote testing approaches that require
integration of hardware and software
components, such as video recorders and
logging software. For Web site logging,
WET appears to be easier to use and learn
than WebVIP. It requires the creation of
an event handling file and the addition
of a small block of code in each Web page
header, whereas WebVIP requires the
evaluator to add code to every link on all
Web pages. WET also enables the evalua-
tor to capture more comprehensive usage
data than WebVIP. WebCAT appears
straightforward to use and learn for topic
category analysis. Both remote testing and
performance measurement techniques
have restrictions on the types of UIs to
which they can be applied. This is mainly
determined by the underlying hardware
(e.g., PC Anywhere only operates on PC
platforms) or UIMS, although KALDI
can potentially be used to evaluate Java
applications on a wide range of platforms.

4.2. Automating Usability Testing Methods:
Analysis Support

Log file analysis methods automate anal-
ysis of data captured during formal or
informal interface use. Since Web servers
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Table IV. Synopsis of Automated Analysis Support for Usability Testing Methodsa

Method Class: Usability Testing
Automation Type: Analysis
Method Type: Log File Analysis—analyze usage data (19 methods)
UE Method UI Effort
Use metrics during log file analysis (DRUM, MIKE UIMS, AMME) WIMP IF
Use metrics during log file analysis (Service Metrics, Bacheldor [1999]) Web IF
Use pattern matching during log file analysis (MRP) WIMP IF
Use task models during log file analysis (IBOT, QUIP, KALDI, UsAGE) WIMP IF
Use task models and pattern-matching during log file analysis (ÉMA, WIMP IFM

USINE, RemUSINE)
Visualization of log files (Guzdial et al. [1994]) WIMP IF
Statistical analysis or visualization of log files (traffic- and time-based Web IF

analyses, VISVIP, Starfield, and Dome Tree visualizations)
aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

automatically log client requests, log file
analysis is a heavily used methodology
for evaluating Web interfaces [Drott 1998;
Fuller and de Graaff 1996; Hochheiser and
Shneiderman 2001; Sullivan 1997]. Our
survey reveals four general approaches for
analyzing WIMP and Web log files: metric-
based, pattern-matching, task-based, and
inferential. Table IV provides a synopsis
of automated analysis methods discussed
in the remainder of this section. We dis-
cuss support available for the four general
approaches separately.

4.2.1. Automating Usability Testing Methods:
Analysis Support—Metric-Based Analysis of Log
Files. Metric-based approaches generate
quantitative performance measurements.
Three examples for WIMP interfaces are
DRUM [Macleod and Rengger 1993], the
MIKE UIMS [Olsen, Jr. and Halversen
1988], and AMME (automatic mental
model evaluator) [Rauterberg 1995,
1995b; Rauterberg and Aeppili 1995].
DRUM enables the evaluator to review a
videotape of a usability test and manually
log starting and ending points for tasks.
DRUM processes this log and derives
several measurements, including: task
completion time, user efficiency (i.e.,
effectiveness divided by task completion
time), and productive period (i.e., portion
of time the user did not have problems).
DRUM also synchronizes the occurrence
of events in the log with videotaped
footage, thus speeding up video analysis.

The MIKE UIMS enables an evaluator
to assess the usability of a UI specified as
a model that can be rapidly changed and
compiled into a functional UI. MIKE cap-
tures usage data and generates a num-
ber of general, physical, logical, and vi-
sual metrics, including performance time,
command frequency, the number of physi-
cal operations required to complete a task,
and required changes in the user’s focus
of attention on the screen. MIKE also cal-
culates these metrics separately for com-
mand selection (e.g., traversing a menu,
typing a command name, or hitting a
button) and command specification (e.g.,
entering arguments for a command) to
help the evaluator locate specific problems
within the UI.

AMME employs Petri nets [Petri 1973]
to reconstruct and analyze the user’s
problem-solving process. It requires a spe-
cially formatted log file and a manually
created system description file (i.e., a list
of interface states and a state transition
matrix) in order to generate the Petri
net. It then computes measures of be-
havioral complexity (i.e., steps taken to
perform tasks), routinization (i.e., repet-
itive use of task sequences), and ratios of
thinking versus waiting time. User stud-
ies with novices and experts validated
these quantitative measures and showed
behavioral complexity to correlate nega-
tively with learning (i.e., less steps are
taken to solve tasks as a user learns the
interface) [Rauterberg and Aeppili 1995].
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Hence, the behavioral complexity measure
provides insight on interface complexity. It
is also possible to simulate the generated
Petri net (see Section 8) to further analyze
the user’s problem-solving and learning
processes. Multidimensional scaling and
Markov analysis tools are available for
comparing multiple Petri nets (e.g., nets
generated from novice and expert user
logs). Since AMME processes log files, it
could easily be extended to Web interfaces.

For the Web, site analysis tools devel-
oped by Service Metrics [1999] and oth-
ers [Bacheldor 1999] allow evaluators to
pinpoint performance bottlenecks, such as
slow server response time, that may have
a negative impact on the usability of a
Web site. Service Metrics’ tools, for ex-
ample, can collect performance measures
from multiple geographical locations un-
der various access conditions. In general,
performance measurement approaches fo-
cus on server and network performance,
but provide little insight into the usability
of the Web site itself.

4.2.2. Automating Usability Testing Methods:
Analysis Support—Pattern-Matching Analysis of
Log Files. Pattern-matching approaches,
such as MRP (maximum repeating pat-
tern) [Siochi and Hix 1991], analyze
user behavior captured in logs. MRP de-
tects and reports repeated user actions
(e.g., consecutive invocations of the same
command and errors) that may indicate
usability problems. Studies with MRP
showed the technique to be useful for de-
tecting problems with expert users, but
additional data prefiltering was required
for detecting problems with novice users.
Whether the evaluator performed this pre-
filtering or it was automated is unclear in
the literature.

Three evaluation methods employ pat-
tern matching in conjunction with task
models. We discuss these methods imme-
diately below.

4.2.3. Automating Usability Testing Methods:
Analysis Support—Task-Based Analysis of Log
Files. Task-based approaches analyze dis-
crepancies between the designer’s antici-
pation of the user’s task model and what

a user actually does while using the sys-
tem. The IBOT system [Zettlemoyer et al.
1999] automatically analyzes log files to
detect task completion events. The IBOT
system interacts with Windows operat-
ing systems to capture low-level win-
dow events (e.g., keyboard and mouse ac-
tions) and screen buffer information (i.e.,
a screen image that can be processed to
automatically identify widgets). The sys-
tem then combines this information into
interface abstractions (e.g., menu select
and menubar search operations). Evalu-
ators can use the system to compare user
and designer behavior on these tasks and
to recognize patterns of inefficient or in-
correct behaviors during task completion.
Without such a tool, the evaluator has to
study the log files and do the comparison
manually. Future work has been proposed
to provide critique support.

The QUIP (quantitative user interface
profiling) tool [Helfrich and Landay 1999]
and KALDI [Al-Qaimari and McRostie
1999] (see previous section) provide more
advanced approaches to task-based, log
file analysis for Java-based UIs. Unlike
other approaches, QUIP aggregates traces
of multiple user interactions and com-
pares the task flows of these users to the
designer’s task flow. QUIP encodes quan-
titative time- and trace-based information
into directed graphs (see Figure 2). For ex-
ample, the average time between actions
is indicated by the color of each arrow,
and the proportion of users who performed
a particular sequence of actions is indi-
cated by the width of each arrow. The de-
signer’s task flow is indicated by the diag-
onal shading in Figure 2. Currently, the
evaluator must program the UI to collect
the necessary usage data, and must manu-
ally analyze the graphs to identify usabil-
ity problems.

KALDI captures usage data and screen
shots for Java applications. It also enables
the evaluator to classify tasks (both man-
ually and via automatic filters), compare
user performance on tasks, and play back
synchronized screen shots. It depicts logs
graphically in order to facilitate analysis.

UsAGE [Uehling and Wolf 1995], which
also supports logging usage data within a
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Fig. 2 . QUIP usage profile con-
trasting task flows for two users
to the designer’s task flow (di-
agonal shading) [Helfrich and
Landay 1999]. Each node repre-
sents a user action, and arrows in-
dicate actions taken by users. The
width of arrows denotes the frac-
tion of users completing actions,
and the color of arrows reflects
the average time between actions
(darker colors correspond to longer
times). Reprinted with permission
of the authors.

UIMS, provides a similar graphical pre-
sentation for comparing event logs for ex-
pert and novice users. However, graph
nodes are labeled with UIMS event names,
thus making it difficult to map events
to specific interface tasks. To mitigate
this shortcoming, UsAGE allows the eval-
uator to replay recorded events in the
interface.

Several systems incorporate pattern
matching (see discussion above) into their
analyses. This combination results in the
most advanced log file analysis of all of
the approaches surveyed. These systems
include ÉMA (automatic analysis mecha-
nism for the ergonomic evaluation of user
interfaces) [Balbo 1996], USINE (user in-
terface evaluator) [Lecerof and Paternò
1998], and RemUSINE (remote user in-
terface evaluator) [Paternò and Ballardin
1999], all discussed below.

ÉMA uses a manually created dataflow
task model and standard behavior heuris-
tics to flag usage patterns that may indi-
cate usability problems. ÉMA extends the
MRP approach (repeated command execu-
tion) to detect additional patterns, includ-
ing immediate task cancellation, shifts in
direction during task completion, and dis-
crepancies between task completion and
the task model. ÉMA outputs results in
an annotated log file, which the evaluator

must manually inspect to identify usabil-
ity problems. Application of this technique
to the evaluation of ATM (automated teller
machine) usage corresponded with prob-
lems identified using standard heuristic
evaluation [Balbo 1996].

USINE [Lecerof and Paternò 1998] em-
ploys the ConcurTaskTrees [Paternò et al.
1997] notation to express temporal re-
lationships among UI tasks (e.g., en-
abling, disabling, and synchronization).
Using this information, USINE looks for
precondition errors (i.e., task sequences
that violate temporal relationships) and
also reports quantitative metrics (e.g.,
task completion time) and information
about task patterns, missing tasks, and
user preferences reflected in the usage
data. Studies with a graphical interface
showed that USINE’s results correspond
with empirical observations and highlight
the source of some usability problems.
To use the system, evaluators must cre-
ate task models using the ConcurTask-
Trees editor as well as a table specify-
ing mappings between log entries and the
task model. USINE processes log files and
outputs detailed reports and graphs to
highlight usability problems. RemUSINE
[Paternò and Ballardin 1999] is an exten-
sion that analyzes multiple log files (typi-
cally captured remotely) to enable compar-
ison across users.

4.2.4. Automating Usability Testing Methods:
Analysis Support—Inferential Analysis of Log
Files. Inferential analysis of Web log files
includes both statistical and visualiza-
tion techniques. Statistical approaches in-
clude traffic-based analysis (e.g., pages
per visitor or visitors per page) and time-
based analysis (e.g., clickstreams and
page-view durations) [Drott 1998; Fuller
and de Graaff 1996; Sullivan 1997; Theng
and Marsden 1998]. Some methods re-
quire manual preprocessing or filtering of
the logs before analysis. Furthermore, the
evaluator must interpret reported mea-
sures in order to identify usability prob-
lems. Software tools, such as WebTrends
[WebTrends Corporation 2000], facilitate
analysis by presenting results in graphi-
cal and report formats.
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Statistical analysis is largely inconclu-
sive for Web server logs, since they provide
only a partial trace of user behavior and
timing estimates may be skewed by
network latencies. Server log files are also
missing valuable information about what
tasks users want to accomplish [Byrne
et al. 1999; Schwartz 2000]. Nonethe-
less, statistical analysis techniques have
been useful for improving usability and
enable ongoing, cost-effective evaluation
throughout the life of a site [Fuller and
de Graaff 1996; Sullivan 1997].

Visualization is also used for inferential
analysis of WIMP and Web log files [Chi
et al. 2000; Cugini and Scholtz 1999; Guz-
dial et al. 1994; Hochheiser and Shnei-
derman 2001]. It enables evaluators to fil-
ter, manipulate, and render log file data
in a way that ideally facilitates analysis.
Guzdial et al. [1994] propose several tech-
niques for analyzing WIMP log files, such
as color-coding patterns and command us-
age, tracking screen updates, and tracking
mouseclick locations and depth (i.e., num-
ber of times the user clicked the mouse in
screen areas). However, there is no discus-
sion of how effective these approaches are
in supporting analysis.

Starfield visualization [Hochheiser and
Shneiderman 2001] is one approach that
enables evaluators to interactively explore
Web server log data in order to gain an
understanding of human factors issues
related to visitation patterns. This ap-
proach combines the simultaneous display
of a large number of individual datapoints
(e.g., URLs requested vs. time of requests)
in an interface that supports zooming, fil-
tering, and dynamic querying [Ahlberg
and Shneiderman 1994]. Visualizations
provide a high-level view of usage pat-
terns (e.g., usage frequency, correlated ref-
erences, bandwidth usage, HTTP errors,
and patterns of repeated visits over time)
that the evaluator must explore to identify
usability problems. It would be beneficial
to employ a statistical analysis approach
to study traffic, clickstreams, and page
views prior to exploring visualizations.

The Dome Tree visualization [Chi et al.
2000] provides an insightful representa-
tion of simulated (see Section 8) and ac-

tual Web usage captured in server log
files. This approach maps a Web site
into a three-dimensional surface repre-
senting the hyperlinks (see the top part
of Figure 3). The location of links on the
surface is determined by a combination
of content similarity, link usage, and link
structure of Web pages. The visualization
highlights the most commonly traversed
subpaths. An evaluator can explore these
usage paths to possibly gain insight about
the information “scent” (i.e., common top-
ics among Web pages on the path) as de-
picted in the bottom window of Figure
3. This additional information may help
the evaluator infer what the information
needs of site users are, and more impor-
tantly, may help infer whether the site
satisfies those needs. The Dome Tree visu-
alization also reports a crude path traver-
sal time based on the sizes of pages (i.e.,
number of bytes in HTML and image files)
along the path. Server log accuracy limits
the extent to which this approach can suc-
cessfully indicate usability problems. As
is the case for Starfield visualization, it
would be beneficial to statistically analyze
log files prior to using this approach.

VISVIP [Cugini and Scholtz 1999] is a
three-dimensional tool for visualizing log
files compiled by WebVIP during usabil-
ity testing (see previous section). Figure 4
shows VISVIP’s Web site (top graph) and
usage path (bottom graph) depictions to be
similar to the Dome Tree visualization ap-
proach. VISVIP generates a 2-D layout of
the site where adjacent nodes are placed
closer together than nonadjacent nodes. A
third dimension reflects timing data as a
dotted vertical bar at each node; the height
is proportional to the amount of time.
VISVIP also provides animation facili-
ties for visualizing path traversal. Since
WebVIP logs reflect actual task comple-
tion, prior statistical analysis is not nec-
essary for VISVIP usage.

4.2.5. Automating Usability Testing Methods:
Analysis Support—Discussion. Table IV sum-
marizes log file analysis methods dis-
cussed in this section. Although the
techniques vary widely on the four as-
sessment criteria (effectiveness, ease of
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Fig. 3 . Dome Tree visualization [Chi et al. 2000] of a Web site with a usage
path displayed as a series of connected lines across the left side. The bottom
part of the figure displays information about the usage path, including an
estimated navigation time and information scent (i.e., common keywords
along the path). Reprinted with permission of the authors.

use, ease of learning, and applicability),
all approaches offer substantial benefits
over the alternative—time-consuming,
unaided analysis of potentially large
amounts of raw data. Hybrid task-based

pattern-matching techniques like USINE
may be the most effective (i.e., provide
clear insight for improving usability via
task analysis); however, they require
additional effort and learning time over
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Fig. 4 . VISVIP visualization [Cugini and Scholtz 1999] of a Web site (top part).
The bottom part of the figure displays a usage path (series of directed lines on
the left site) laid over a site. The top and bottom figures are for two different
sites. Reprinted with permission of the authors.
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Table V. Synopsis of Automated Capture Support for Inspection Methodsa

Method Class: Inspection
Automation Type: Capture
Method Type: Cognitive Walkthrough—expert simulates user’s problem solving

(1 method)
UE Method UI Effort
Software assists the expert with documenting a cognitive walkthrough WIMP F

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

simpler pattern-matching approaches;
this additional effort is mainly in the
development of task models. Although
pattern-matching approaches are easier
to use and learn, they only detect problems
for prespecified usage patterns.

Metric-based approaches in the WIMP
domain have been effective at associ-
ating measurements with specific inter-
face aspects, such as commands and
tasks, which can then be used to iden-
tify usability problems. AMME also helps
the evaluator to understand the user’s
problem-solving process and conduct sim-
ulation studies. However, metric-based
approaches require the evaluator to con-
duct more analysis to ascertain the source
of usability problems than task-based ap-
proaches. Metric-based techniques in the
Web domain focus on server and network
performance, which provides little usabil-
ity insight. Similarly, inferential analysis
of Web server logs is limited by their accu-
racy and may provide inconclusive usabil-
ity information.

Most of the techniques surveyed in this
section could be applied to WIMP and Web
UIs other than those demonstrated on,
with the exception of the MIKE UIMS and
UsAGE, which require a WIMP UI to be
developed within a special environment.
AMME could be employed for both Web
and WIMP UIs, provided log files and sys-
tem models are available.

5. AUTOMATING INSPECTION METHODS

A usability inspection is an evaluation
methodology whereby an evaluator ex-
amines the usability aspects of a UI de-
sign with respect to its conformance to
a set of guidelines. Guidelines can range

from highly specific prescriptions to broad
principles. Unlike other UE methods, in-
spections rely solely on the evaluator’s
judgment. A large number of detailed us-
ability guidelines have been developed for
WIMP interfaces [Open Software Foun-
dation 1991; Smith and Mosier 1986]
and Web interfaces [Comber 1995; De-
tweiler and Omanson 1996; Levine 1996;
Lynch and Horton 1999; Web Accessibility
Initiative 1999]. Common nonautomated
inspection techniques are heuristic evalu-
ation [Nielsen 1993] and cognitive walk-
throughs [Lewis et al. 1990].

Designers have historically experienced
difficulties following design guidelines
[Borges et al. 1996; de Souza and Bevan
1990; Lowgren and Nordqvist 1992; Smith
1986]. One study has demonstrated that
designers are biased towards aestheti-
cally pleasing interfaces, regardless of
efficiency [Sears 1995]. Because designers
have difficulty applying design guidelines,
automation has been predominately used
within the inspection class to objectively
check guideline conformance. Software
tools assist evaluators with guideline
review by automatically detecting and
reporting usability violations and in some
cases making suggestions for fixing them
[Balbo 1995; Farenc and Palanque 1999].
Automated capture, analysis, and critique
support is available for the guideline re-
view and cognitive walkthrough method
types, as described in the remainder of
this section.

5.1. Automating Inspection Methods:
Capture Support

Table V summarizes capture support for
inspection methods, namely, a system
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Table VI. Synopsis of Automated Analysis Support for Inspection Methodsa

Method Class: Inspection
Automation Type: Analysis
Method Type: Guideline Review—expert checks guideline conformance (8 methods)
UE Method UI Effort
Use quantitative screen measures for analysis (AIDE, WIMP
Parush et al. [1998])
Analyze terminology and consistency of UI elements (Sherlock) WIMP
Analyze the structure of Web pages (Rating Game, HyperAT, Gentler) Web
Use guidelines for analysis (WebSAT) Web
Analyze the scanning path of a Web page (Design Advisor) Web

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

developed to assist an evaluator with a
cognitive walkthrough. During a cognitive
walkthrough, an evaluator attempts to
simulate a user’s problem-solving pro-
cess while examining UI tasks. At each
step of a task, the evaluator assesses
whether a user would succeed or fail to
complete the step. Hence, the evaluator
produces extensive documentation dur-
ing this analysis. There was an early
attempt to “automate” cognitive walk-
throughs by prompting evaluators with
walkthrough questions and enabling
evaluators to record their analyses in
HyperCard. Unfortunately, evaluators
found this approach too cumbersome and
time consuming to employ [Rieman et al.
1991].

5.2. Automating Inspection Methods:
Analysis Support

Table VI provides a synopsis of automated
analysis methods for inspection-based us-
ability evaluation, discussed in detail in
the remainder of this section. All of the
methods require minimal effort to employ;
we denote this with a blank entry in the ef-
fort column. We discuss support available
for WIMP and Web UIs separately.

5.2.1. Automating Inspection Methods: Anal-
ysis Support—WIMP UIs. Several quantita-
tive measures have been proposed for eval-
uating interfaces. Tullis [1983] derived
size measures (overall density, local
density, number of groups, size of groups,
number of items, and layout complexity).
Streveler and Wasserman [1984] proposed

“boxing,” “hot-spot,” and “alignment” anal-
ysis techniques. These early techniques
were designed for alphanumeric displays,
whereas more recent techniques evaluate
WIMP interfaces. Vanderdonckt and Gillo
[1994] proposed five visual techniques
(physical composition, association and
dissociation, ordering, and photographic
techniques), which identified more visual
design properties than traditional bal-
ance, symmetry, and alignment measures.
Rauterberg [1996a] proposed and vali-
dated four measures (functional feedback,
interactive directness, application flexi-
bility, and dialog flexibility) to evaluate
WIMP UIs. Quantitative measures have
been incorporated into automated layout
tools [Bodart et al. 1994; Kim and Foley
1993] as well as several automated anal-
ysis tools [Mahajan and Shneiderman
1997; Parush et al. 1998; Sears 1995],
discussed immediately below.

Parush et al. [1998] developed and
validated a tool for computing the com-
plexity of dialog boxes implemented with
Microsoft Visual Basic. It considers
changes in the size of screen elements, the
alignment and grouping of elements, as
well as the utilization of screen space in its
calculations. User studies demonstrated
that tool results can be used to decrease
screen search time and ultimately to
improve screen layout. AIDE (semiauto-
mated interface designer and evaluator)
[Sears 1995] is a more advanced tool that
helps designers assess and compare dif-
ferent design options using quantitative
task-sensitive and task-independent met-
rics, including efficiency (i.e., distance of
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cursor movement), vertical and horizontal
alignment of elements, horizontal and
vertical balance, and designer-specified
constraints (e.g., position of elements).
AIDE also employs an optimization al-
gorithm to automatically generate initial
UI layouts. Studies with AIDE showed it
to provide valuable support for analyzing
the efficiency of a UI and incorporating
task information into designs.

Sherlock [Mahajan and Shneiderman
1997] is another automated analysis
tool for Windows interfaces. Rather than
assessing ergonomic factors, it focuses
on task-independent consistency checking
(e.g., same widget placement and labels)
within the UI or across multiple UIs; user
studies have shown a 10 to 25% speedup
for consistent interfaces [Mahajan and
Shneiderman 1997]. Sherlock evaluates
visual properties of dialog boxes, termi-
nology (e.g., identify confusing terms and
check spelling), as well as button sizes
and labels. Sherlock evaluates any Win-
dows UI that has been translated into a
special canonical format file; this file con-
tains GUI object descriptions. Currently,
there are translators for Microsoft Visual
Basic and Microsoft Visual C++ resource
files.

5.2.2. Automating Inspection Methods: Anal-
ysis Support—Web UIs. The Rating Game
[Stein 1997] is an automated analysis tool
that attempts to measure the quality of
a set of Web pages using a set of easily
measurable features. These include: an in-
formation feature (word to link ratio), a
graphics feature (number of graphics on
a page), a gadgets feature (number of ap-
plets, controls, and scripts on a page), and
so on. The tool reports these raw measures
without providing guidance for improving
a Web page.

Two authoring tools from Middlesex
University, HyperAT [Theng and Marsden
1998] and Gentler [Thimbleby 1997], per-
form a similar structural analysis at
the site level. The goal of the Hypertext
authoring tool (HyperAT) is to support
the creation of well-structured hyperdoc-
uments. It provides a structural analysis

which focuses on verifying that the
breadths and depths within a page and at
the site level fall within thresholds (e.g.,
depth is less than three levels). (HyperAT
also supports inferential analysis of
server log files similar to other log file
analysis techniques; see Section 4.2.)
Gentler [Thimbleby 1997] provides sim-
ilar structural analysis but focuses on
maintenance of existing sites rather than
the design of new ones.

The Web static analyzer tool (SAT)
[Scholtz and Laskowski 1998], part of the
NIST WebMetrics suite of tools, assesses
static HTML according to a number of
usability guidelines, such as whether all
graphics contain ALT attributes, the aver-
age number of words in link text, and the
existence of at least one outgoing link on
a page. Currently, WebSAT only processes
individual pages and does not suggest im-
provements [Chak 2000]. Future plans for
this tool include adding the ability to in-
spect the entire site more holistically in
order to identify potential problems in in-
teractions between pages.

Unlike other analysis approaches, the
Design Advisor [Faraday 2000] enables
visual analysis of Web pages. The tool
uses empirical results from eye-tracking
studies designed to assess the atten-
tional effects of various elements, such
as animation, images, and highlighting,
in multimedia presentations [Faraday and
Sutcliffe 1998]; these studies found mo-
tion, size, images, color, text style, and
position to be scanned in this order. The
Design Advisor determines and superim-
poses a scanning path on a Web page as
depicted in Figure 5. It currently does not
provide suggestions for improving scan-
ning paths.

5.2.3. Automating Inspection Methods: Anal-
ysis Support—Discussion. Table VI summa-
rizes automated analysis methods dis-
cussed in this section. All of the WIMP
approaches are highly effective at check-
ing for guidelines that can be op-
erationalized. These include computing
quantitative measures (e.g., the size of
screen elements, screen space usage, and
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Fig. 5 . The Design Advisor [Faraday 2000] superimposes a scanning path on the Web
page. The numbers indicate the order in which elements will be scanned. Reproduced
with permission of the author.

efficiency) and checking consistency (e.g.,
same widget size and placement across
screens). All of the tools have also been
empirically validated. However, the tools
cannot assess UI aspects that cannot be
operationalized, such as whether the la-
bels used on elements will be understood
by users. For example, Farenc et al. [1999]
show that only 78% of a set of estab-
lished ergonomic guidelines could be oper-
ationalized in the best case scenario and
only 44% in the worst case. All methods
also suffer from limited applicability (in-
terfaces developed with Microsoft Visual
Basic or Microsoft Visual C). The tools ap-
pear to be straightforward to learn and
use, provided the UI is developed in the
appropriate environment.

The Rating Game, HyperAT, and
Gentler compute and report a number of
statistics about a page (e.g., number of
links, graphics, and words). However, the
effectiveness of these structural analyses
is questionable, since the thresholds
have not been empirically validated.

Although there have been some investi-
gations into breadth and depth tradeoffs
for the Web [Larson and Czerwinski
1998; Zaphiris and Mtei 1997], general
thresholds still remain to be established.
Although WebSAT helps designers adhere
to good coding practices, these practices
have not been shown to improve usability.
There may be some indirect support for
these methods through research aimed at
identifying aspects that affect Web site
credibility [Fogg 1999; Fogg et al. 2000],
since credibility affects usability and
vice versa. This work presents a survey
of over 1,400 Web users as well as an
empirical study which indicated that
typographical errors, ads, broken links,
and other aspects have an impact on
credibility; some of these aspects can be
detected by automated UE tools, such as
WebSAT. All of these approaches are easy
to use, learn, and apply to all Web UIs.

The visual analysis supported by the
Design Advisor could help designers im-
prove Web page scanning. It requires a
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Table VII. Synopsis of Automated Critique Support for Inspection Methodsa

Method Class: Inspection
Automation Type: Critique
Method Type: Guideline Review—expert checks guideline conformance (11 methods)
UE Method UI Effort
Use guidelines for critiquing (KRI/AG, IDA, CHIMES, Ergoval) WIMP
Use guidelines for critiquing and modifying a UI (SYNOP) WIMP M
Check HTML syntax (Weblint, Dr. Watson) Web
Use guidelines for critiquing (Lift Online, Lift Onsite, Web
Bobby, WebEval)

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

special Web browser for use, but is easy
to use, learn, and apply to basic Web pages
(i.e., pages that do not use scripts, applets,
Macromedia Flash, or other non-HTML
technology). Heuristics employed by this
tool were developed based on empirical re-
sults from eye-tracking studies of multi-
media presentations, but have not been
empirically validated for Web pages.

We are currently developing a method-
ology for deriving Web design guidelines
directly from sites that have been assessed
by human judges [Ivory et al. 2000, 2001;
Ivory 2001]. We have identified a num-
ber of Web page measures having to do
with page composition (e.g., number of
words, links, and images), page format-
ting (e.g., emphasized text, text position-
ing, and text clusters), and overall page
characteristics (e.g., page size and down-
load speed). Empirical studies have shown
that we can predict with high accuracy
whether a Web page will be rated favor-
ably based on key metrics. Future work
will identify profiles of highly rated pages
that can be used to help designers improve
Web UIs.

5.3. Automating Inspection Methods:
Critique Support

Critique systems give designers clear
directions for conforming to violated
guidelines and consequently improving
usability. As mentioned above, following
guidelines is difficult, especially when
there are a large number of guidelines to
consider. Automated critique approaches,
especially ones that modify a UI [Balbo

1995], provide the highest level of support
for adhering to guidelines.

Table VII provides a synopsis of auto-
mated critique methods discussed in the
remainder of this section. All but one
method, SYNOP, require minimal effort to
employ; we denote this with a blank en-
try in the effort column. We discuss sup-
port available for WIMP and Web UIs
separately.

5.3.1. Automating Inspection Methods: Cri-
tique Support—WIMP UIs. The KRI/AG tool
(knowledge-based review of user inter-
face) [Lowgren and Nordqvist 1992] is an
automated critique system that checks
the guideline conformance of X-Window
UI designs created using the TeleUSE
UIMS [Lee 1997]. KRI/AG contains a
knowledge base of guidelines and style
guides, including the Smith and Mosier
guidelines [1986] and Motif style guides
[Open Software Foundation 1991]. It uses
this information to automatically critique
a UI design and generate comments about
possible flaws in the design. IDA (user
interface design assistance) [Reiterer
1994] also embeds rule-based (i.e., expert
system) guideline checks within a UIMS.
SYNOP [Balbo 1995] is a similar auto-
mated critique system that performs a
rule-based critique of a control system
application. SYNOP also modifies the UI
model based on its evaluation. CHIMES
(computer-human interaction models)
[Jiang et al. 1993] assesses the degree to
which NASA’s space-related critical and
high-risk interfaces meet human factors
standards.
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Unlike KRI/AG, IDA, SYNOP, and
CHIMES, Ergoval [Farenc and Palanque
1999] is widely applicable to WIMP UIs
on Windows platforms. It organizes guide-
lines into an object-based framework (i.e.,
guidelines that are relevant to each graph-
ical object) in order to bridge the gap be-
tween the developer’s view of an interface
and how guidelines are traditionally pre-
sented (i.e., checklists). This approach is
being incorporated into a Petri net envi-
ronment [Palanque et al. 1999] to enable
guideline checks throughout the develop-
ment process.

5.3.2. Automating Inspection Methods: Cri-
tique Support—Web UIs. Several automated
critique tools use guidelines for Web
site usability checks. The World Wide
Web Consortium’s HTML Validation
Service [World Wide Web Consortium
2000] checks that HTML code conforms
to standards. Weblint [Bowers 1996] and
Dr. Watson [Addy & Associates 2000]
also check HTML syntax and in addition
verify links. Dr. Watson also computes
download speed and spell-checks text.

UsableNet’s LIFT Online and LIFT On-
site [Usable Net 2000] perform usability
checks similar to WebSAT (discussed in
Section 5.2.2) as well as checking for use of
standard and portable link, text, and back-
ground colors, the existence of stretched
images, and other guideline violations.
LIFT Online suggests improvements, and
LIFT Onsite guides users through mak-
ing suggested improvements. According to
Chak [2000], these two tools provide valu-
able guidance for improving Web sites.
Bobby [Clark and Dardailler 1999; Cooper
1999] is another HTML analysis tool that
checks Web pages for their accessibility
[Web Accessibility Initiative 1999] to peo-
ple with disabilities.

Conforming to the guidelines embed-
ded in these tools can potentially elimi-
nate usability problems that arise due to
poor HTML syntax (e.g., missing page el-
ements) or guideline violations. As pre-
viously discussed, research on Web site
credibility [Fogg 1999; Fogg et al. 2000]
possibly suggests that some of the aspects

assessed by these tools, such as bro-
ken links and other errors, may also af-
fect usability due to the relationship be-
tween usability and credibility. However,
Ratner et al. [1996] question the valid-
ity of HTML usability guidelines, since
most HTML guidelines have not been sub-
jected to a rigorous development process
as established guidelines for WIMP in-
terfaces. Analysis of 21 HTML guidelines
showed little consistency among them,
with 75% of recommendations appearing
in only one style guide. Furthermore, only
20% of HTML-relevant recommendations
from established WIMP guidelines existed
in the 21 HTML style guides. WebEval
[Scapin et al. 2000] is one automated cri-
tique approach being developed to address
this issue. Similar to Ergoval (discussed
above), it provides a framework for ap-
plying established WIMP guidelines to
relevant HTML components. Even with
WebEval, some problems, such as whether
text will be understood by users, are diffi-
cult to detect automatically.

5.3.3. Automating Inspection Methods: Cri-
tique Support—Discussion. Table VII sum-
marizes automated critique methods dis-
cussed in this section. All of the WIMP
approaches are highly effective at sug-
gesting UI improvements for those guide-
lines that can be operationalized. These
include checking for the existence of la-
bels for text fields, listing menu options
in alphabetical order, and setting default
values for input fields. However, they can-
not assess UI aspects that cannot be op-
erationalized, such as whether the la-
bels used on elements will be understood
by users. As previously discussed, Farenc
et al. [1999] show that only 78% of a set
of established ergonomic guidelines could
be operationalized in the best case sce-
nario and only 44% in the worst case.
Another drawback of approaches that
are not embedded within a UIMS (e.g.,
SYNOP) is that they require consider-
able modeling and learning effort on the
part of the evaluator. All methods, ex-
cept Ergoval, also suffer from limited
applicability.
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Table VIII. Synopsis of Automated Capture Support for Inquiry Methodsa

Method Class: Inquiry
Automation Type: Capture
Method Type: Questionnaires—user provides answers to specific questions

(2 methods)
UE Method UI Effort
Questionnaire embedded within the UI (UPM) WIMP IF
HTML forms-based questionnaires (e.g., WAMMI, QUIS, or WIMP, Web IF
NetRaker)

aThe effort level for each method is represented as: minimal (blank), formal (F), informal
(I), and model (M).

As previously discussed, conforming to
the guidelines embedded in HTML anal-
ysis tools can potentially eliminate us-
ability problems that arise due to poor
HTML syntax (e.g., missing page ele-
ments) or guideline violations. However,
Ratner et al. [1996] question the validity
of HTML usability guidelines, since most
have not been subjected to a rigorous de-
velopment process as established guide-
lines for WIMP interfaces and have little
consistency among them. Brajnik [2000]
surveyed 11 automated Web site analy-
sis methods, including Bobby and Lift On-
line. The survey revealed that these tools
address only a sparse set of usability fea-
tures, such as download time, presence of
alternative text for images, and validation
of HTML and links. Other usability as-
pects, such as consistency and information
organization are unaddressed by existing
tools.

All of the Web critique tools are applica-
ble to basic HTML pages and appear to be
easy to use and learn. They also enable on-
going assessment, which can be extremely
beneficial after making changes.

6. AUTOMATING INQUIRY METHODS

Similar to usability testing approaches,
inquiry methods require feedback from
users and are often employed during us-
ability testing. However, the focus is not on
studying specific tasks or measuring per-
formance. Rather the goal of these meth-
ods is to gather subjective impressions
(i.e., preferences or opinions) about vari-
ous aspects of a UI. Evaluators also em-
ploy inquiry methods, such as surveys,

questionnaires, and interviews, to gather
supplementary data after a system is re-
leased; this is useful for improving the
interface for future releases. In addition,
evaluators use inquiry methods for needs
assessment early in the design process.

Inquiry methods vary based on whether
the evaluator interacts with a user or a
group of users or whether users report
their experiences using questionnaires or
usage logs, possibly in conjunction with
screen snapshots. Automation has been
used predominately to capture subjective
impressions during formal or informal in-
terface use.

6.1. Automating Inquiry Methods:
Capture Support

Table VIII provides a synopsis of cap-
ture methods developed to assist users
with completing questionnaires. Software
tools enable the evaluator to collect sub-
jective usability data and possibly make
improvements throughout the life of an
interface. Questionnaires can be embed-
ded into a WIMP UI to facilitate the re-
sponse capture process. Typically dialog
boxes prompt users for subjective input
and process responses (e.g., saves data to
a file or emails data to the evaluator).
For example, UPM (the user partnering
module) [Abelow 1993] uses event-driven
triggers (e.g., errors or specific command
invocations) to ask users specific questions
about their interface usage. This approach
allows the evaluator to capture user reac-
tions while they are still fresh.

The Web inherently facilitates cap-
ture of questionnaire data using forms.
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Users are typically presented with an
HTML page for entering data, and a pro-
gram on the Web server (e.g., a CGI
script) processes responses. Several val-
idated questionnaires are available in
Web format, including QUIS (question-
naire for user interaction satisfaction)
[Harper and Norman 1993] for WIMP in-
terfaces and WAMMI (Website analysis
and measurement inventory) [Kirakowski
and Claridge 1998] for Web interfaces.
NetRaker’s [2000] usability research tools
enable evaluators to create custom HTML
questionnaires and usability tests via a
template interface and view a graphical
summary of results even while studies
are in progress. NetRaker’s tools include
the NetRaker Index (a short usability
questionnaire) for continuously gathering
feedback from users about a Web site.
Chak [2000] reports that NetRaker’s tools
are highly effective for gathering direct
user feedback, but points out the need to
address potential irritations caused by the
NetRaker Index’s pop-up survey window.

As previously discussed, automated
capture methods represent an important
first step toward informing UI improve-
ments. Automation support for inquiry
methods makes it possible to collect data
quickly from a larger number of users
than is typically possible without au-
tomation. However, these methods suffer
from the same limitation of nonautomated
approaches—they may not clearly indicate
usability problems due to the subjective
nature of user responses. Furthermore,
they do not support automated analysis
or critique of interfaces. The real value of
these techniques is that they are easy to
use and widely applicable.

7. AUTOMATING ANALYTICAL MODELING
METHODS

Analytical modeling complements tra-
ditional evaluation techniques such as
usability testing. Given some representa-
tion or model of the UI and/or the user,
these methods enable the evaluator to
inexpensively predict usability. A wide
range of modeling techniques has been
developed and supports different types of

analyses. de Haan et al. [1992] classify
modeling approaches into the following
four categories.

—Models for task environment analy-
sis: enable the evaluator to assess the
mapping between the user’s goals and
UI tasks (i.e., how the user accomplishes
these goals within the UI). ETIT (ex-
ternal internal task mapping) [Moran
1983] is one example for evaluating the
functionality, learnability, and consis-
tency of the UI;

—Models to analyze user knowledge: en-
able the evaluator to use formal gram-
mars to represent and assess knowl-
edge required for interface use. AL
(Action language) [Reisner 1984] and
TAG (task-action grammar) [Payne and
Green 1986] allow the evaluator to com-
pare alternative designs and predict dif-
ferences in learnability;

—Models of user performance: enable
the evaluator to predict user behav-
ior, mainly task completion time. Three
methods discussed in this section,
GOMS analysis [John and Kieras 1996],
CTA [May and Barnard 1994], and PUM
[Young et al. 1989], support perfor-
mance prediction; and

—Models of the user interface: enable
the evaluator to represent the UI de-
sign at multiple levels of abstraction
(e.g., syntactic and semantic levels) and
assess this representation. CLG (com-
mand language grammar) [Moran 1981]
and ETAG (extended task-action gram-
mar) [Tauber 1990] are two methods for
representing and inspecting designs.

Models that focus on user performance,
such as GOMS analysis, typically sup-
port quantitative analysis. The other
approaches typically entail qualitative
analysis and in some cases, such as TAG,
support quantitative analysis as well. Our
survey only revealed automation support
for methods that focus on user perfor-
mance, including GOMS analysis, CTA,
and PUM; this is most likely because
performance prediction methods support
quantitative analysis, which is easier
to automate.
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Table IX. Synopsis of Automated Analysis Support for Analytical Modeling Methodsa

Method Class: Analytical Modeling
Automation Type: Analysis
Method Type: UIDE Analysis—conduct GOMS analysis within a UIDE (4 methods)
UE Method UI Effort
Generate predictions for GOMS task models (QGOMS, CATHCI) WIMP M
Generate GOMS task models and predictions (USAGE, CRITIQUE) WIMP M
Method Type: Cognitive Task Analysis—predict usability problems (1 method)
Conduct a cognitive analysis of an interface and generate predictions WIMP M
(CTA)
Method Type: Programmable User Models—write program that acts as a user

(1 method)
UE Method UI Effort
Program architecture to mimic user interaction with an interface (PUM) WIMP M

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

Automation has been predominately
used to analyze task completion (e.g., ex-
ecution and learning time) within WIMP
UIs. Analytical modeling inherently sup-
ports automated analysis. Our survey
did not reveal analytical modeling tech-
niques to support automated critique.
Most analytical modeling and simulation
approaches are based on the model hu-
man processor (MHP) proposed by Card
et al. [1993]. GOMS analysis (goals, opera-
tors, methods, and selection rules) is one of
the most widely accepted analytical mod-
eling methods based on the MHP [John
and Kieras 1996]. Other methods based on
the MHP employ simulation and are dis-
cussed in Section 8.

7.1. Automating Analytical Modeling
Methods: Analysis Support

Table IX provides a synopsis of automated
analysis methods discussed in the remain-
der of this section. The survey did not re-
veal analytical modeling methods for eval-
uating Web UIs.

7.1.1. Automating Analytical Modeling Meth-
ods: Analysis Support—WIMP UIs. The GOMS
family of analytical methods use a task
structure consisting of goals, operators,
methods, and selection rules. Using this
task structure along with validated time
parameters for each operator, the meth-
ods enable predictions of task execution
and learning times, typically for error-free
expert performance. The four approaches

in this family include the original GOMS
method proposed by Card et al. [1993],
(CMN-GOMS) the simpler keystroke-level
model (KLM), the natural GOMS lan-
guage (NGOMSL), and the critical path
method (CPM-GOMS) [John and Kieras
1996]. These approaches differ in the task
granularity modeled (e.g., keystrokes vs. a
high-level procedure) and in the support
for alternative task completion methods
and support for single goals versus mul-
tiple simultaneous goals.

Two of the major roadblocks to us-
ing GOMS have been the tedious task
analysis and the need to calculate ex-
ecution and learning times [Baumeister
et al. 2000; Byrne et al. 1994; Hudson
et al. 1999; Kieras et al. 1995]. These
were originally specified and calculated
manually or with generic tools such as
spreadsheets. In some cases, evaluators
implemented GOMS models in compu-
tational cognitive architectures, such as
Soar or EPIC (discussed in Section 8).
This approach actually added complex-
ity and time to the analysis [Baumeis-
ter et al. 2000]. QGOMS (quick and dirty
GOMS) [Beard et al. 1996] and CATHCI
(cognitive analysis tool for human com-
puter interfaces) [Williams 1993] provide
support for generating quantitative pre-
dictions, but still require the evaluator
to construct GOMS models. Baumeister
et al. [2000] studied these approaches and
showed them to be inadequate for GOMS
analysis.
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USAGE3 (the UIDE System for semiau-
tomated GOMS evaluation) [Byrne et al.
1994] and CRITIQUE (the convenient,
rapid, interactive tool for integrating
quick usability evaluations) [Hudson et al.
1999] provide support for automatically
generating a GOMS task model and quan-
titative predictions for the model. Both
of these tools accomplish this within a
user interface development environment
(UIDE). GLEAN (GOMS language eval-
uation and analysis) [Kieras et al. 1995]
is another tool that generates quanti-
tative predictions for a given GOMS
task model (discussed in more detail in
Section 8). These tools reduce the effort
required to employ GOMS analysis and
generate predictions that are consistent
with models produced by experts. The ma-
jor hindrance to wide application of these
tools is that they operate on limited plat-
forms (e.g., Sun machines), model low-
level goals (e.g., at the keystroke level for
CRITIQUE), do not support multiple task
completion methods (even though GOMS
was designed to support this), and rely on
an idealized expert user model.

Cognitive task analysis (CTA) [May
and Barnard 1994] uses a different
modeling approach from GOMS analysis.
GOMS analysis requires the evaluator
to construct a model for each task to
be analyzed. However, CTA requires the
evaluator to input an interface description
to an underlying theoretical model for
analysis. The theoretical model, an expert
system based on interacting cognitive
subsystems (ICS, discussed in Section
8), generates predictions about perfor-
mance and usability problems similarly
to a cognitive walkthrough. The system
prompts the evaluator for interface de-
tails from which it generates predictions
and a report detailing the theoretical
basis of predictions. The authors refer
to this form of analysis as “supportive
evaluation.”

The programmable user model (PUM)
[Young et al. 1989] is an entirely dif-
ferent analytical modeling technique. In

3 This is not to be confused with the UsAGE log file
capture and analysis tool discussed in Section 4.

this approach, the designer is required to
write a program that acts as a user using
the interface; the designer must specify
explicit sequences of operations for each
task. Task sequences are then analyzed
by an architecture (similar to the CTA ex-
pert system) that imposes approximations
of psychological constraints, such as mem-
ory limitations. Constraint violations can
be seen as potential usability problems.
The designer can alter the interface design
to resolve violations, and ideally improve
the implemented UI as well. Once the de-
signer successfully programs the architec-
ture (i.e., creates a design that adheres to
the psychological constraints), the model
can then be used to generate quantitative
performance predictions similar to GOMS
analysis. By making a designer aware of
considerations and constraints affecting
usability from the user’s perspective, this
approach provides clear insight into spe-
cific problems with a UI.

7.1.2. Automating Analytical Modeling Meth-
ods: Analysis Support—Discussion. Table IX
summarizes automated analysis methods
discussed in this section. Analytical mod-
eling approaches enable the evaluator to
produce relatively inexpensive results to
inform design choices. GOMS has been
shown to be applicable to all types of
WIMP UIs and is effective at predicting
usability problems. However, these predic-
tions are limited to error-free expert per-
formance in many cases although early
accounts of GOMS considered error correc-
tion [Card et al. 1983]. The development of
USAGE and CRITIQUE has reduced the
learning time and effort required to apply
GOMS analysis, but they suffer from limi-
tations previously discussed. Tools based
on GOMS may also require empirical
studies to determine operator parame-
ters in cases where these parameters
have not been previously validated and
documented.

Although CTA is an ideal solution for it-
erative design, it does not appear to be a
fully developed methodology. Two demon-
stration systems have been developed and
effectively used by a group of practitioners
as well as by a group of graduate students
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[May and Barnard 1994]. However, some
users experienced difficulty with entering
system descriptions, which can be a time-
consuming process. After the initial inter-
face specification, subsequent analysis is
easier because the demonstration systems
store interface information. The approach
appears to be applicable to all WIMP UIs.
It may be possible to apply a more fully
developed approach to Web UIs.

PUM is a programming approach, and
thus requires considerable effort and
learning time to employ. Although it ap-
pears that this technique is applicable to
all WIMP UIs, its effectiveness is not dis-
cussed in detail in the literature.

Analytical modeling of Web UIs lags
far behind efforts for WIMP interfaces.
Many Web authoring tools, such as
Microsoft FrontPage and Macromedia
Dreamweaver, provide limited support for
usability evaluation in the design phase
(e.g., predict download time and check
HTML syntax). This addresses only a
small fraction of usability problems. While
analytical modeling techniques are poten-
tially beneficial, our survey did not un-
cover any approaches that address this
gap in Web site evaluation. Approaches
such as GOMS analysis will not map as
well to the Web domain, because it is diffi-
cult to predict how a user will accomplish
the goals in a task hierarchy given that
there are many different ways to navigate
a typical site. Another problem is GOMS’
reliance on an expert user model (at least
in the automated approaches), which does
not fit the diverse user community of the
Web. Hence, new analytical modeling ap-
proaches, such as a variation of CTA,
are required to evaluate the usability of
Web sites.

8. AUTOMATING SIMULATION METHODS

Simulation complements traditional UE
methods and, like analytical modeling,
can be viewed as inherently supporting
automated analysis. Using models of the
user and/or the interface design, these
approaches simulate the user interacting
with the interface and report the results

of this interaction, in the form of perfor-
mance measures and interface operations,
for instance. Evaluators can run simu-
lations with different parameters in or-
der to study various UI design tradeoffs
and thus make more informed decisions
about UI implementation. Simulation is
also used to automatically generate syn-
thetic usage data for analysis with log file
analysis techniques [Chi et al. 2000] or
event playback in a UI [Kasik and George
1996]. Thus simulation can also be viewed
as supporting automated capture to some
degree.

8.1. Automating Simulation Methods:
Capture Support

Table X provides a synopsis of the two
automated capture methods discussed in
this section. Kasik and George [1996] de-
veloped an automated technique for gen-
erating and capturing usage data; these
data could then be used for driving tools
that replay events (such as executing a
log file) within Motif-based UIs. The goal
of this work is to use a small number of
input parameters to inexpensively gener-
ate a large number of usage traces (or test
scripts) representing novice users. The
evaluator can then use these traces to find
weak spots, failures, and other usability
problems.

To create novice usage traces, the
designer initially produces a trace repre-
senting an expert using the UI; a script-
ing language is available to produce this
trace. The designer can then insert devia-
tion commands at different points within
the expert trace. During trace execution,
a genetic algorithm determines user be-
havior at deviation points, and in effect
simulates a novice user learning by exper-
imentation. Genetic algorithms consider
past history in generating future random
numbers; this enables the emulation of
user learning. Altering key features of the
genetic algorithm enables the designer to
simulate other user models. Although cur-
rently not supported by this tool, tradi-
tional random number generation can also
be employed to explore the outer limits of a

ACM Computing Surveys, Vol. 33, No. 4, December 2001.



498 M. Y. Ivory and M. A. Hearst

Table X. Synopsis of Automated Capture Support for Simulation Methodsa

Method Class: Simulation
Automation Type: Capture
Method Type: Genetic Algorithm Modeling—mimic novice user interaction

(1 method)
UE Method UI Effort
Generate and capture usage traces representing novice users WIMP
(Kasik and George [1996])
Method Type: Information Scent Modeling—mimic Web site navigation (1 method)
UE Method UI Effort
Generate and capture navigation paths for information-seeking tasks Web M
(Chi et al. [2000])

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

UI, for example, by simulating completely
random behavior.

Chi et al. [2000] developed a similar ap-
proach for generating and capturing navi-
gation paths for Web UIs. This approach
creates a model of an existing site that
embeds information about the similarity
of content among pages, server log data,
and linking structure. The evaluator spec-
ifies starting points in the site and in-
formation needs (i.e., specified pages) as
input to the simulator. The simulation
models a number of agents (i.e., hypotheti-
cal users) traversing the links and content
of the site model. At each page, the model
considers information “scent” (i.e., com-
mon keywords between an agent’s goal
and content on linked pages) in mak-
ing navigation decisions. Navigation deci-
sions are controlled probabilistically such
that most agents traverse higher-scent
links (i.e., closest match to information
goal) and some agents traverse lower-
scent links. Simulated agents stop when
they reach the specified pages or after
an arbitrary amount of effort (e.g., maxi-
mum number of links or browsing time).
The simulator records navigation paths
and reports the proportion of agents that
reached specified pages.

The authors use these usage paths
as input to the Dome Tree visualization
methodology, an inferential log file analy-
sis approach discussed in Section 4. The
authors compare actual and simulated
navigation paths for Xerox’s corporate site
and discover a close match when scent

is “clearly visible” (meaning links are not
embedded in long text passages or ob-
structed by images). Since the site model
does not consider actual page elements,
the simulator cannot account for the im-
pact of various page aspects, such as the
amount of text or reading complexity, on
navigation choices. Hence, this approach
may enable only crude approximations
of user behavior for sites with complex
pages.

8.1.1. Automating Simulation Methods: Cap-
ture Support—Discussion. Table X summa-
rizes automated capture methods dis-
cussed in this section. Without these
techniques, the evaluator must anticipate
all possible usage scenarios or rely on
formal or informal interface use to gen-
erate usage traces. Formal and informal
use limit UI coverage to a small number
of tasks or to UI features that are em-
ployed in regular use. Automated tech-
niques, such as the genetic algorithm ap-
proach, enable the evaluator to produce
a larger number of usage scenarios and
widen UI coverage with minimal effort.

The system developed by Kasik and
George [1976] appears to be relatively
straightforward to use, since it interacts
directly with a running application and
does not require modeling. Interaction
with the running application also ensures
that generated usage traces are plausible.
Experiments demonstrated that it is pos-
sible to generate a large number of us-
age traces within an hour. However, an
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Table XI. Synopsis of Automated Analysis Support for Simulation Methodsa

Method Class: Simulation
Automation Type: Analysis
Method Type: Petri Net Modeling—mimic user interaction from usage data

(1 method)
UE Method UI Effort
Construct Petri nets from usage data and analyze problem solving WIMP IF
(AMME)
Method Type: Information Processor Modeling—mimic user interaction (9 methods)
UE Method UI Effort
Employ a computational cognitive architecture for UI analysis WIMP M
(ACT-R, COGNET, EPIC, HOS, Soar, CCT, ICS, GLEAN)
Employ a GOMS-like model to analyze navigation (Site Profile) Web M

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M).

evaluator must manually analyze the ex-
ecution of each trace in order to iden-
tify problems. The authors propose future
work to automatically verify that a trace
produces the correct result. The evaluator
must also program an expert user trace,
which could make the system difficult to
use and learn. Currently, this tool is only
applicable to Motif-based UIs.

The approach developed by Chi et al.
[2000] is applicable to all Web UIs. It also
appears to be straightforward to use and
learn, since software produces the Web
site model automatically. The evaluator
must manually interpret simulation re-
sults; however, analysis could be facili-
tated with the Dome Tree visualization
tool.

8.2. Automating Simulation Methods:
Analysis Support

Table XI provides a synopsis of the au-
tomated analysis methods discussed in
the remainder of this section. We con-
sider methods for WIMP and Web UIs
separately.

8.2.1. Automating Simulation Methods: Analy-
sis Support—WIMP UIs. AMME [Rauterberg
and Aeppili 1995] (see Section 4.1) is the
only surveyed approach that constructs
a WIMP simulation model (Petri net) di-
rectly from usage data. Other methods
are based on a model similar to the MHP

and require the evaluator to conduct a
task analysis (and subsequently validate
it with empirical data) in order to de-
velop a simulator. Hence, AMME is more
accurate and flexible (i.e., task and user
independent), and simulates more detail
(e.g., error performance and preferred task
sequences). AMME simulates learning,
user decisions, and task completion and
outputs a measure of behavior complex-
ity. The behavior complexity measure has
been shown to correlate negatively with
learning and interface complexity. Studies
have also validated the accuracy of gener-
ated models with usage data [Rauterberg
1995]. AMME should be applicable to Web
interfaces as well, since it constructs mod-
els from log files. Despite its advantages,
AMME still requires formal interface use
to generate log files for simulation studies.

The remaining WIMP simulation meth-
ods are based on sophisticated computa-
tional cognitive architectures, theoretical
models of user behavior, similar to the
MHP previously discussed. Unlike analyt-
ical modeling approaches, these methods
attempt to approximate user behavior as
accurately as possible. For example, the
simulator may track the user’s memory
contents, interface state, and the user’s
hand movements during execution. This
enables the simulator to report a detailed
trace of the simulation run. Some sim-
ulation methods, such as CCT [Kieras
and Polson 1985] (discussed below), can
also generate predictions statically (i.e.,
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without being executed) similarly to an-
alytical modeling methods.

Pew and Mavor [1998] provide a
detailed discussion of computational
cognitive architectures and an overview
of many approaches, including five
that we discuss: ACT-R (adaptive con-
trol of thought) [Anderson 1990, 1993],
COGNET (cognition as a network of tasks)
[Zachary et al. 1996], EPIC (executive-
process interactive control) [Kieras et al.
1997], HOS (human operator simulator)
[Glenn et al. 1992], and Soar [Laird and
Rosenbloom 1996; Polk and Rosenbloom
1994]. Here, we also consider CCT (cog-
nitive complexity theory) [Kieras and
Polson 1985], ICS (interacting cognitive
subsystems) [Barnard 1987; Barnard
and Teasdale 1991], and GLEAN (GOMS
language evaluation and analysis) [Kieras
et al. 1995]. Rather than describe each
method individually, we summarize the
major characteristics of these simulation
methods in Table XII and discuss them
below.

Modeled Tasks. The models we sur-
veyed simulate the following three
types of tasks: a user performing cog-
nitive tasks (e.g., problem-solving and
learning: COGNET, ACT-R, Soar, ICS);
a user immersed in a human-machine
system (e.g., an aircraft or tank: HOS);
and a user interacting with a typical UI
(EPIC, GLEAN, CCT).

Modeled Components. Some simulations
focus solely on cognitive processing
(ACT-R, COGNET) whereas others in-
corporate perceptual and motor pro-
cessing as well (EPIC, ICS, HOS, Soar,
GLEAN, CCT).

Component Processing. Task execution is
modeled as serial processing (ACT-R,
GLEAN, CCT), parallel processing
(EPIC, ICS, Soar), or semiparallel pro-
cessing (serial processing with rapid at-
tention switching among the modeled
components, giving the appearance of
parallel processing: COGNET, HOS).

Model Representation. To represent the
underlying user or system, simulation

methods use task hierarchies (as in
a GOMS task structure: HOS, CCT),
production rules (CCT, ACT-R, EPIC,
Soar, ICS), or declarative/procedural
programs (GLEAN, COGNET). CCT
uses both a task hierarchy and produc-
tion rules to represent the user and sys-
tem models, respectively.

Predictions. The surveyed methods re-
turn a number of simulation results, in-
cluding predictions of task performance
(EPIC, CCT, COGNET, GLEAN, HOS,
Soar, ACT-R), memory load (ICS, CCT),
learning (ACT-R, Soar, ICS, GLEAN,
CCT), or behavior predictions such
as action traces (ACT-R, COGNET,
EPIC).

These methods vary widely in their abil-
ity to illustrate usability problems. Their
effectiveness is largely determined by the
characteristics discussed (modeled tasks,
modeled components, component process-
ing, model representation, and predic-
tions). Methods that are potentially the
most effective at illustrating usability
problems do so by modeling UI interac-
tion and all components (perception, cog-
nition, and motor) in parallel, employ
production rules, and report on task per-
formance, memory load, learning, and
simulated user behavior. Such methods
would enable the most flexibility and clos-
est approximation of actual user behavior.
The use of production rules is important
in this methodology, because it relaxes
the requirement for an explicit task hier-
archy, thus allowing for the modeling of
more dynamic behavior, such as Web site
navigation.

EPIC is the only simulation analy-
sis method that embodies most of these
ideal characteristics. It employs produc-
tion rules and models UI interaction
and all components (perception, cognition,
and motor) processing in parallel. It re-
ports task performance and simulated
user behavior, but does not report memory
load and learning estimates. Studies with
EPIC demonstrated that predictions for
telephone operator and menu searching
tasks closely match observed data. EPIC
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Table XII. Characteristics of WIMP Simulation Methods Based on a Variation of the MHP

Parameter UE Methods
Modeled Tasks
problem-solving and/or learning COGNET, ACT-R, Soar, ICS
human-machine system HOS
UI interaction EPIC, GLEAN, CCT

Modeled Components
cognition, ACT-R, COGNET
perception, cognition, & motor EPIC, ICS, HOS, Soar, GLEAN, CCT

Component Processing
serial ACT-R, GLEAN, CCT
semiparallel COGNET, HOS
parallel EPIC, ICS, Soar

Model Representation
task hierarchy HOS, CCT
production rules CCT, ACT-R, EPIC, Soar, ICS
program GLEAN, COGNET

Predictions
task performance EPIC, CCT, COGNET, GLEAN, HOS, Soar, ACT-R
memory load ICS, CCT
learning ACT-R, Soar, ICS, GLEAN, CCT
behavior ACT-R, COGNET, EPIC

and all of the other methods require con-
siderable learning time and effort to em-
ploy. They are also applicable to a wide
range of WIMP UIs.

8.2.2. Automating Simulation Methods: Analy-
sis Support—Web UIs. Our survey revealed
only one simulation approach for analysis
of Web interfaces, WebCriteria’s Site Pro-
file [Web Criteria 1999]. Unlike the other
simulation approaches, it requires an im-
plemented interface for evaluation. Site
Profile performs analysis in four phases:
gather, model, analyze, and report. Dur-
ing the gather phase, a spider traverses
a site (200 to 600 unique pages) to col-
lect Web site data. These data are then
used to construct a nodes-and-links model
of the site. For the analysis phase, it uses
an idealistic Web user model (called Max
[Lynch et al. 1999]) to simulate a user’s
information-seeking behavior; this model
is based on prior research with GOMS
analysis. Given a starting point in the
site, a path, and a target, Max “follows”
the path from the starting point to the
target and logs measurement data. These
measurements are used to compute an ac-
cessibility metric, which is then used to
generate a report. This approach can be

used to compare Web sites, provided that
an appropriate navigation path is supplied
for each.

The usefulness of this approach is ques-
tionable, since currently it only com-
putes accessibility (navigation time) for
the shortest path between specified start
and destination pages using a single
user model. Other measurements, such
as freshness and page composition, also
have questionable value in improving the
Web site. Brajnik [2000] showed Site
Profile to support only a small fraction
of the analysis supported by guideline
review methods, such as WebSAT and
Bobby (discussed in Section 5). Chak
[2000] also cautions that the accessibility
measure should be used as an initial
benchmark, not a highly accurate approx-
imation. Site Profile does not entail any
learning time or effort on the part of the
evaluator, since WebCriteria performs the
analysis. The method is applicable to all
Web UIs.

8.2.3. Automating Simulation Methods: Anal-
ysis Support—Discussion. Table XI sum-
marizes automated analysis methods
discussed in this section. Unlike most
evaluation approaches, simulation can be
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Table XIII. Synopsis of Automated Analysis Support for Usability Testing Methodsa

Method Class: Usability Testing
Automation Type: Analysis
Method Type: Log File Analysis—analyze usage data (19 methods)
UE Method UI Effort
Use metrics during log file analysis (DRUM, MIKE, UIMS, AMME) WIMP IF
Use metrics during log file analysis (Service Metrics, Bacheldor [1999]) Web IF
Use pattern-matching during log file analysis (MRP) WIMP IF
Use task models during log file analysis (IBOT, QUIP, KALDI, UsAGE) WIMP IF
Use task models and pattern-matching during log file analysis (ÉMA, WIMP IFM
USINE, RemUSINE)
Visualization of log files (Guzdial et al. [1994]) WIMP IF
Statistical analysis or visualization of log files (traffic- and time-based Web IF
analyses, VISVIP, Starfield and Dome Tree visualizations) Web IF

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M). This is a repetition of Table IV.

employed prior to UI implementation in
most cases (although AMME and WebCri-
teria’s Site Profile are exceptions to this).
Hence, simulation enables alternative
designs to be compared and optimized
before implementation.

It is difficult to assess the effectiveness
of simulation methods, although there
have been reports that show EPIC [Kieras
et al. 1997] and GLEAN [Baumeister et al.
2000] to be effective. AMME appears to
be the most effective method, since it
is based on actual usage. AMME also
enables ongoing assessment and could
be widely used for WIMP and Web in-
terfaces, provided log files and system
models are available. EPIC is the only
method based on the MHP that em-
bodies the ideal simulator characteris-
tics previously discussed. GLEAN is ac-
tually based on EPIC, so it has similar
properties.

In general, simulation methods are
more difficult to use and learn than
other evaluation methods, because they
require constructing or manipulating com-
plex models as well as understanding the
theory behind a simulation approach. Ap-
proaches based on the MHP are widely
applicable to all WIMP UIs. Approaches
that use production rules, such as EPIC,
CCT, and Soar, could possibly be applied
to Web UIs where task sequences are not
as clearly defined as WIMP UIs. Soar has
actually been adapted to model browsing

tasks similar to Web browsing [Peck and
John 1992].

9. EXPANDING EXISTING APPROACHES TO
AUTOMATING USABILITY EVALUATION
METHODS

Automated usability evaluation methods
have many potential benefits, includ-
ing reducing the costs of nonautomated
methods, aiding in comparisons between
alternative designs, and improving con-
sistency in evaluation results. We have
studied numerous methods that support
automation. Based on the methods sur-
veyed, it is our opinion that research to
further develop log file analysis, guide-
line review, analytical modeling, and sim-
ulation techniques could result in sev-
eral promising automated techniques as
discussed in more detail below. Ivory
[2001] provides a more detailed dis-
cussion of techniques that merit fur-
ther research, including approaches based
on performance evaluation of computer
systems.

9.1. Expanding Log File Analysis
Approaches

Our survey showed log file analysis to be
a viable methodology for automated anal-
ysis of usage data. Table XIII summarizes
current approaches to log file analysis. We
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propose the following three ways to ex-
pand and improve on these approaches.

Generating synthetic usage data for
analysis. The main limitation of log file
analysis is that it still requires formal
or informal interface use to employ. One
way to expand the use and benefits of this
methodology is to leverage a small amount
of test data to generate a larger set of plau-
sible usage data. This is even more impor-
tant for Web interfaces, since server logs
do not capture a complete record of user
interactions. We discussed two simulation
approaches, one using a genetic algorithm
[Kasik and George 1996] and the other us-
ing information scent modeling [Chi et al.
2000] (see Section 8.1), that automatically
generate plausible usage data. The genetic
algorithm approach determines user be-
havior during deviation points in an ex-
pert user script, and the information scent
model selects navigation paths by consid-
ering word overlap between links and Web
pages. Both of these approaches generate
plausible usage traces without formal or
informal interface use. These techniques
also provide valuable insight on how to
leverage real usage data from usability
tests or informal use. For example, real
data could also serve as input scripts for
genetic algorithms; the evaluator could
add deviation points to these.

Using log files for comparing UIs. Real
and simulated usage data could also
be used to evaluate comparable WIMP
UIs, such as word processors and image
editors. Task sequences could comprise
a usability benchmark (i.e., a program
for measuring UI performance); this is
similar to GOMS analysis of compara-
ble task models. After mapping task
sequences into specific UI operations in
each interface, the benchmark could be
executed within each UI to collect mea-
surements. Representing this benchmark
as a log file of some form would enable the
log file to be executed within a UI by re-
play tools, such as QC/Replay [Centerline
1999] for X-Windows, UsAGE [Uehling
and Wolf 1995] for replaying events
within a UIMS (discussed in Section 4),
or WinRunner [Mercury Interactive 2000]

for a wide range of applications (e.g.,
Java and Oracle applications). This is
a promising open area of research for
evaluating comparable WIMP UIs.

Augmenting task-based pattern-mat-
ching approaches with guidelines in order
to support automated critique. Given a
wider sampling of usage data, using task
models and pattern-matching during log
file analysis is a promising research area
to pursue. Task-based approaches that fol-
low the USINE model in particular (i.e.,
compare a task model expressed in terms
of temporal relationships to usage traces)
provide the most support among the meth-
ods surveyed. USINE outputs informa-
tion to help the evaluator understand
user behavior, preferences, and errors. Al-
though the authors claim that this ap-
proach works well for WIMP UIs, it needs
to be adapted to work for Web UIs where
tasks may not be clearly defined. In ad-
dition, since USINE already reports sub-
stantial analysis data, these data could be
compared to usability guidelines in order
to support automated critique.

9.2. Expanding Guideline Review
Approaches

Several guideline review methods for
analysis of WIMP interfaces (see
Table XIV) could be augmented with
guidelines to support automated critique.
For example, AIDE [Sears 1995] (dis-
cussed in Section 5) provides the most
support for evaluating UI designs. It
computes a number of quantitative mea-
sures and also generates initial interface
layouts. Guidelines, such as thresholds
for quantitative measures, could also
be incorporated into AIDE analysis to
support automated critique.

Although there are several guideline re-
view methods for analyzing and critiquing
Web UIs (see Tables XIV and XV), exist-
ing approaches only cover a small fraction
of usability aspects [Brajnik 2000] and
have not been empirically validated. We
are developing a methodology for deriving
Web design guidelines directly from sites
that have been assessed by human judges
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Table XIV. Synopsis of Automated Analysis Support for Inspection Methodsa

Method Class: Inspection
Automation Type: Analysis
Method Type: Guideline Review—expert checks guideline conformance (8 methods)
UE Method UI Effort
Use quantitative screen measures for analysis (AIDE, WIMP
Parush et al. [1998])
Analyze terminology and consistency of UI elements (Sherlock) WIMP
Analyze the structure of Web pages (Rating Game, HyperAT, Gentler) Web
Use guidelines for analysis (WebSAT) Web
Analyze the scanning path of a Web page (Design Advisor) Web

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M). This is a repetition of Table VI.

Table XV. Synopsis of Automated Critique Support for Inspection Methodsa

Method Class: Inspection
Automation Type: Critique
Method Type: Guideline Review—expert checks guideline conformance (11 methods)
UE Method UI Effort
Use guidelines for critiquing (KRI/AG, IDA, CHIMES, Ergoval) WIMP
Use guidelines for critiquing and modifying a UI (SYNOP) WIMP M
Check HTML syntax (Weblint, Dr. Watson) Web
Use guidelines for critiquing (Lift Online, Lift Onsite, Web
Bobby, WebEval)

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M). This is a repetition of Table VII.

[Ivory et al. 2000, 2001; Ivory 2001]. We
have identified a number of Web page mea-
sures having to do with page composition
(e.g., number of words, links, and images),
page formatting (e.g., emphasized text,
text positioning, and text clusters), and
overall page characteristics (e.g., page size
and download speed). Empirical studies
have shown that we can predict with high
accuracy whether a Web page will be rated
favorably based on key metrics. Future
work will identify profiles of highly rated
pages that can be used to help designers
improve Web UIs.

9.3. Expanding Analytical Modeling
Approaches

Our survey showed that evaluation within
a user interface development environ-
ment (UIDE) is a promising approach
for automated analysis via analytical
modeling. Table XVI summarizes current
approaches to analytical modeling. We
propose to augment UIDE analysis meth-

ods, such as CRITIQUE and GLEAN, with
guidelines to support automated critique.
Guidelines, such as thresholds for learn-
ing or executing certain types of tasks,
could assist the designer with interpret-
ing prediction results and improving UI
designs. Evaluation within a UIDE should
also make it possible to automatically op-
timize UI designs based on guidelines.

Although UIDE analysis is promising,
it is not widely used in practice. This may
be due to the fact that most tools are re-
search systems and have not been incorpo-
rated into popular commercial tools. This
is unfortunate since incorporating ana-
lytical modeling and possibly simulation
methods within a UIDE should mitigate
some barriers to their use, such as being
too complex and time consuming to em-
ploy [Bellotti 1988]. Applying such anal-
ysis approaches outside these user inter-
face development environments is an open
research problem.

Cognitive task analysis [May and
Barnard 1994] provides some insight for
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Table XVI. Synopsis of Automated Analysis Support for Analytical Modeling Methodsa

Method Class: Analytical Modeling
Automation Type: Analysis
Method Type: UIDE Analysis—conduct GOMS analysis within a UIDE (4 methods)
UE Method UI Effort
Generate predictions for GOMS task models (QGOMS, CATHCI) WIMP M
Generate GOMS task models and predictions (USAGE, CRITIQUE) WIMP M
Method Type: Cognitive Task Analysis—predict usability problems (1 method)
Conduct a cognitive analysis of an interface and generate predictions WIMP M
(CTA)
Method Type: Programmable User Models—rite program that acts as a user

(1 method)
UE Method UI Effort
Program architecture to mimic user interaction with an interface (PUM) WIMP M

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M). This is a repetition of Table IX.

Table XVII. Synopsis of Automated Analysis Support for Simulation Methodsa

Method Class: Simulation
Automation Type: Analysis
Method Type: Petri Net Modeling—imic user interaction from usage data

(1 method)
UE Method UI Effort
Construct Petri nets from usage data and analyze problem solving WIMP IF
(AMME)
Method Type: Information Processor Modeling—mimic user interaction (9 methods)
UE Method UI Effort
Employ a computational cognitive architecture for UI analysis (ACT-R, WIMP M
COGNET, EPIC, HOS, Soar, CCT, ICS, GLEAN)
Employ a GOMS-like model to analyze navigation (Site Profile) Web M

aThe effort level for each method is represented as: minimal (blank), formal (F), informal (I),
and model (M). This is a repetition of Table XI.

analyzing UIs outside a UIDE. Further-
more, CTA is a promising approach for
automated analysis, provided more effort
is spent to fully develop this methodology.
This approach is consistent with analyti-
cal modeling techniques employed outside
HCI, such as in the performance evalua-
tion of computer systems [Ivory 2001; Jain
1991]; this is because with CTA the evalu-
ator provides UI parameters to an under-
lying model for analysis versus developing
a new model to assess each UI. However,
one of the drawbacks of CTA is the need to
describe the interface to the system. In-
tegrating this approach into a UIDE or
UIMS should make this approach more
tenable.

As previously discussed, analytical
modeling approaches for Web UIs still

remain to be developed. It may not be pos-
sible to develop new approaches using a
paradigm that requires explicit task hier-
archies. However, a variation of CTA may
be appropriate for Web UIs.

9.4. Expanding Simulation Approaches

Table XVII summarizes current ap-
proaches to simulation analysis. Our
survey showed that existing simulations
based on a human information processor
model have widely different uses (e.g.,
modeling a user interacting with a UI or
solving a problem). Thus, it is difficult
to draw concrete conclusions about the
effectiveness of these approaches. Simu-
lation in general is a promising research
area to pursue for automated analysis,
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especially for evaluating alternative
designs.

We propose using several simulation
techniques employed in the performance
analysis of computer systems, in particu-
lar, trace-driven discrete-event simulation
and Monte Carlo simulation [Ivory 2001;
Jain 1991], to enable designers to perform
what-if analyses with UIs. Trace-driven
discrete-event simulations employ real us-
age data to model a system as it evolves
over time. Analysts use this approach to
simulate many aspects of computer sys-
tems, such as the processing subsystem,
operating system, and various resource
scheduling algorithms. In the user in-
terface field, all surveyed approaches
use discrete-event simulation. However,
AMME constructs simulation models di-
rectly from logged usage, which is a form
of trace-driven discrete-event simulation.
Similarly, other simulators could be al-
tered to process log files as input instead
of explicit task or user models, potentially
producing more realistic and accurate
simulations.

Monte Carlo simulations enable an eval-
uator to model a system probabilisti-
cally (i.e., sampling from a probability
distribution is used to determine what
event occurs next). Monte Carlo simula-
tion could contribute substantially to au-
tomated analysis by relaxing the need
for explicit task hierarchies or user mod-
els, although such models could still be
employed. Most simulations in this do-
main rely on a single user model, typi-
cally an expert user. Monte Carlo simu-
lation would enable designers to perform
what-if analysis and study design alter-
natives with many user models. The ap-
proach employed by Chi et al. [2000] to
simulate Web site navigation is a close ap-
proximation of Monte Carlo simulation.

10. CONCLUSIONS

In this article we provided an overview of
usability evaluation automation and pre-
sented a taxonomy for comparing various
methods. We also presented an extensive

survey of the use of automation in WIMP
and Web interface evaluation, finding that
automation is used in only 33% of meth-
ods surveyed. Of all the surveyed meth-
ods, only 29% are free from requirements
of formal or informal interface use. All
approaches that do not require formal or
informal interface use, with the exception
of guideline review, are based on analyti-
cal modeling or simulation.

It is important to keep in mind that au-
tomation of usability evaluation does not
capture important qualitative and sub-
jective information (such as user prefer-
ences and misconceptions) that can only
be unveiled via usability testing, heuris-
tic evaluation, and other standard in-
quiry methods. Nevertheless, simulation
and analytical modeling should be useful
for helping designers choose among design
alternatives before committing to expen-
sive development costs.

Furthermore, evaluators could use au-
tomation in tandem with what are usually
nonautomated methods, such as heuris-
tic evaluation and usability testing. For
example, an evaluator doing a heuris-
tic evaluation could observe automatically
generated usage traces executing within
a UI.

Adding automation to usability eval-
uation has many potential benefits, in-
cluding reducing the costs of nonauto-
mated methods, aiding in comparisons
between alternative designs, and im-
proving consistency in usability evalu-
ation. Research to further develop an-
alytical modeling, simulation, guideline
review, and log file analysis techniques
could result in new, effective automated
techniques.

APPENDIX

A. AUTOMATION CHARACTERISTICS OF
WIMP AND WEB INTERFACES

The following tables depict automation
characteristics for WIMP and Web inter-
faces separately. We combined this infor-
mation in Table I.
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Table XVIII. Automation Support for 75 WIMP UE Methodsa

Method Class Automation Type
Method Type None Capture Analysis Critique

Testing
Thinking-Aloud Protocol F (1)
Question-Asking Protocol F (1)
Shadowing Method F (1)
Coaching Method F (1)
Teaching Method F (1)
Codiscovery Learning F (1)
Performance Measurement F (1) F (4)
Log File Analysis IFM (10)∗
Retrospective Testing F (1)
Remote Testing IF (2)

Inspection
Guideline Review IF (2) (3) M (5)†
Cognitive Walkthrough IF (2) F (1)
Pluralistic Walkthrough IF (1)
Heuristic Evaluation IF (1)
Perspective-Based Inspection IF (1)
Feature Inspection IF (1)
Formal Usability Inspection F (1)
Consistency Inspection IF (1)
Standards Inspection IF (1)

Inquiry
Contextual Inquiry IF (1)
Field Observation IF (1)
Focus Groups IF (1)
Interviews IF (1)
Surveys IF (1)
Questionnaires IF (1) IF (2)
Self-Reporting Logs IF (1)
Screen Snapshots IF (1)
User Feedback IF (1)

Analytical Modeling
GOMS Analysis M (4) M (2)
UIDE Analysis M (2)
Cognitive Task Analysis M (1)
Task-Environment Analysis M (1)
Knowledge Analysis M (2)
Design Analysis M (2)
Programmable User Models M (1)

Simulation
Information Proc. Modeling M (8)
Petri Net Modeling FM (1)
Genetic Algorithm Modeling (1)

Automation Type
Total 30 5 8 1
Percent 68% 11% 18% 2%

aA number in parentheses indicates the number of UE methods sur-
veyed for a particular method type and automation type. The effort level
for each method is represented as: minimal (blank), formal (F), informal
(I), and model (M). Four software tools provide automation support for
multiple method types: DRUM, performance measurement and log file
analysis; AMME, log file analysis and Petri net modeling; KALDI, perfor-
mance measurement, log file analysis, and remote testing; and UsAGE,
performance measurement and log file analysis.
∗Either formal or informal interface use is required. In addition, a model
may be used in the analysis.
†Methods may or may not employ a model.
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Table XIX. Descriptions of the WIMP UE Method Types Depicted in Table XVIII

Method Class
Method Type Description

Testing
Thinking-Aloud Protocol user talks during test
Question-Asking Protocol tester asks user questions
Shadowing Method expert explains user actions to tester
Coaching Method user can ask an expert questions
Teaching Method expert user teaches novice user
Codiscovery Learning two users collaborate
Performance Measurement tester records usage data during test
Log File Analysis tester analyzes usage data
Retrospective Testing tester reviews videotape with user
Remote Testing tester and user are not colocated during test

Inspection
Guideline Review expert checks guideline conformance
Cognitive Walkthrough expert simulates user’s problem solving
Pluralistic Walkthrough multiple people conduct cognitive walkthrough
Heuristic Evaluation expert identifies violations of heuristics
Perspective-Based Inspection expert conducts narrowly focused heuristic evaluation
Feature Inspection expert evaluates product features
Formal Usability Inspection expert conducts formal heuristic evaluation
Consistency Inspection expert checks consistency across products
Standards Inspection expert checks for standards compliance

Inquiry
Contextual Inquiry interviewer questions users in their environment
Field Observation interviewer observes system use in user’s environment
Focus Groups multiple users participate in a discussion session
Interviews one user participates in a discussion session
Surveys interviewer asks user specific questions
Questionnaires user provides answers to specific questions
Self-Reporting Logs user records UI operations
Screen Snapshots user captures UI screens
User Feedback user submits comments

Analytical Modeling
GOMS Analysis predict execution and learning time
UIDE Analysis conduct GOMS analysis within a UIDE
Cognitive Task Analysis predict usability problems
Task-Environment Analysis assess mapping of user’s goals into UI tasks
Knowledge Analysis predict learnability
Design Analysis assess design complexity
Programmable User Models write program that acts like a user

Simulation
Information Proc. Modeling mimic user interaction
Petri Net Modeling mimic user interaction from usage data
Genetic Algorithm Modeling mimic novice user interaction
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Table XX. Automation Support for 57 Web UE Methodsa

Method Class Automation Type
Method Type None Capture Analysis Critique

Testing
Thinking-Aloud Protocol F (1)
Question-Asking Protocol F (1)
Shadowing Method F (1)
Coaching Method F (1)
Teaching Method F (1)
Codiscovery Learning F (1)
Performance Measurement F (1) F (3)
Log File Analysis IFM (9)
Retrospective Testing F (1)
Remote Testing IF (3)

Inspection
Guideline Review IF (4) (5) (6)
Cognitive Walkthrough IF (2)
Pluralistic Walkthrough IF (1)
Heuristic Evaluation IF (1)
Perspective-Based Inspection IF (1)
Feature Inspection IF (1)
Formal Usability Inspection F (1)
Consistency Inspection IF (1)
Standards Inspection IF (1)

Inquiry
Contextual Inquiry IF (1)
Field Observation IF (1)
Focus Groups IF (1)
Interviews IF (1)
Surveys IF (1)
Questionnaires IF (1) IF (1)
Self-Reporting Logs IF (1)
Screen Snapshots IF (1)
User Feedback IF (1)

Analytical Modeling
No Methods Surveyed

Simulation
Information Proc. Modeling M (1)
Information Scent Modeling M (1)

Automation Type
Total 26 4 3 1
Percent 76% 12% 9% 3%

aA number in parentheses indicates the number of UE methods sur-
veyed for a particular method type and automation type. The effort level
for each method is represented as: minimal (blank), formal (F), informal
(I), and model (M). Two software tools provide automation support for
multiple method types: Dome Tree visualization, log file analysis and
information scent modeling; and WebVIP, performance measurement
and remote testing.
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Table XXI. Descriptions of the Web UE Method Types Depicted in Table XX

Method Class
Method Type Description

Testing
Thinking-Aloud Protocol user talks during test
Question-Asking Protocol tester asks user questions
Shadowing Method expert explains user actions to tester
Coaching Method user can ask an expert questions
Teaching Method expert user teaches novice user
Codiscovery Learning two users collaborate
Performance Measurement tester records usage data during test
Log File Analysis tester analyzes usage data
Retrospective Testing tester reviews videotape with user
Remote Testing tester and user are not colocated during test

Inspection
Guideline Review expert checks guideline conformance
Cognitive Walkthrough expert simulates user’s problem solving
Pluralistic Walkthrough multiple people conduct cognitive walkthrough
Heuristic Evaluation expert identifies violations of heuristics
Perspective-Based Inspection expert conducts narrowly focused heuristic evaluation
Feature Inspection expert evaluates product features
Formal Usability Inspection expert conducts formal heuristic evaluation
Consistency Inspection expert checks consistency across products
Standards Inspection expert checks for standards compliance

Inquiry
Contextual Inquiry interviewer questions users in their environment
Field Observation interviewer observes system use in user’s environment
Focus Groups multiple users participate in a discussion session
Interviews one user participates in a discussion session
Surveys interviewer asks user specific questions
Questionnaires user provides answers to specific questions
Self-Reporting Logs user records UI operations
Screen Snapshots user captures UI screens
User Feedback user submits comments

Analytical Modeling
No Methods Surveyed

Simulation
Information Proc. Modeling mimic user interaction
Information Scent Modeling mimic Web site navigation
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